

Strange Hadron Production at High Baryon Density

Hongcan Li^{1,2} (lihc@mails.ccnu.edu.cn) for the STAR Collaboration ¹Central China Normal University ²University of Chinese Academy of Sciences

SQM-2024, June. 3-7

Outline

- Motivation
- Experimental Setup
- Measurement of Strange Hadron Yield
- Physical Results and Discussion
- Summary and Outlook

Explore QCD Phase Diagram

Reference: N. Xu @ sQM2022

 Study the natures of QGP and QCD phase structure by high energy heavy-ion collisions

>LHC >RHIC

▶.....

- Phase transition between Quark-Gluon Plasma (QGP) and hadronic matter has not been experimentally determined
 - > At small μ_B , smooth crossover
 - > At large μ_B , 1st order phase transition \rightarrow QCD critical point

Strangeness as a Probe to Study the Nuclear Matter

• Strange hadrons production is sensitive to nuclear equation of state (EOS)

Yi Fang, Poster ID 102

Weiguang Yuan, Poster ID 192

Strangeness enhancement has been observed at $\sqrt{s_{NN}} = 14.6$ GeV and higher energies, consistent with QGP formation

Strangeness as a Probe to Study the Nuclear Matter

STAR Detector and Fixed Target Setup

- Large acceptance
- **Excellent PID** with **uniform** efficiency
- **iTPC, EPD & eTOF** upgrades completed
- All are in data-taking for BES-II program

Time Projection Chamber (TPC)

- Charged particle tracking
- Momentum reconstruction
- Particle Identification
- Pseudorapidity coverage for FXT mode:

TPC with iTPC upgrade -2.4 < η < 0

Time-of-Flight (TOF)

- Particle Identification
- Pseudorapidity coverage for FXT mode:

barrel TOF (bTOF): -1.45 < η < 0 end-cap TOF(eTOF): -2.15 < η < -1.55

SQM-2024, June. 3-7

STAR Detector and Fixed Target Setup

Particle Identification

- TPC (dE/dx) and TOF (β) for charged pion and proton identification >TOF m^2 formula: $m^2 = p^2 \left(\frac{1}{\beta^2} - 1\right)$
- K_S^0 , Λ^0 and Ξ^- hadrons are reconstructed by invariant mass method by identifying decay daughters

Strange Hadron Reconstruction

- KFParticle package is used for the strange hadron reconstruction to improve the signal significance
- Combinatorial backgrounds are reconstructed by the rotation method

> Good coverage from beam-rapidity to mid-rapidity for K_s^0 , Λ^0 and Ξ^-

-1.5

Rapidity of C.M. y_{C.M.}

-1

-0.5

0

0.5 -1.5

-1

-0.5

0.5

0

-1.5

-1

-0.5

0.5

-0.5

0

Hongcan Li (for the STAR collaboration)

-1.5

-1

0

0.5

Strange Hadron $p_{\rm T}$ Spectra

- Raw p_T spectrum corrected by acceptance ⊗ reconstruction efficiency estimated via embedding data
- Feed-down effect corrections for Λ^0
- Function fit for $p_{\rm T}$ spectra exptrapolation
 - **>** Blast-wave fit for K_S^0 and Λ^0
 - $> m_{\rm T}$ exponential fit for Ξ^-
- Diffierent function fit (Blast-wave, $m_{\rm T}$ exponential and $p_{\rm T}{}^{3/2}$ exponential) as a systematic error source in dN/dy calculation

Strange Hadron Rapidity density distribution

- Comprehensive strangeness measurements for K_S^0 , Λ^0 and Ξ^- from 3.2 to 4.5 GeV
 - > dN/dy is calculated by integral of p_T spectra
 - Fitting function for dN/dy

$$\frac{dN}{dy} \sim \frac{1}{Cosh\left(\frac{y^2}{2\sigma^2}\right)} = \frac{2}{e^{\frac{y^2}{2\sigma^2}} + e^{-\frac{y^2}{2\sigma^2}}}$$

□Flat at mid rapidity

□Gaussian-like at backward rapidity

Centrality Dependence of Mid-rapidity Yield

Scaling formula:
Yield =
$$c \times \langle N_{part} \rangle^{\alpha_s}$$

Single strange hadrons K_S^0 and Λ^0 follow common scaling trend, but double strange hadron Ξ^- deviate from the common scaling trend > Associated production mode $\square NN \rightarrow N\Lambda K$ $\square NN \rightarrow N\Xi KK$

Energy dependence of Scaling Parameter α_S

- Rapid decrease of scaling parameter α_S for Ξ^- from 4.5 to 7.7 GeV, and saturate at high energy
 - The mechanism of strange hadron production may change
 - Strange hadron production predominantly from hadronic interactions at $\sqrt{s_{NN}} < 4.5 \text{ GeV}$
- UrQMD qualitatively reproduces the energy dependence, but cannot quantitatively describe all energies
 - > likely due to missing medium effects

UrQMD: cascade mode, hard EOS

S.A. Bass, et.al. Prog. Part. Nucl. Phys. 41 (1998)

Strangeness Excitation Function

- Rich structure in strangeness excitation functions
 - Production mechanisms is different at low and high energies (high and low baryon density)
 - **D**Partonic interaction (pair production)

 $gg \to s\overline{s} \text{ or } q\overline{q} \to s\overline{s}$

- **Hadronic interaction (associated production)**
 - $BB \to BYK \text{ or } BB \to B\Xi KK$
 - B: N, p, Δ , etc. Y: Λ , Σ , etc. K: K⁺, K⁰
- ➢ First measurement of Ξ[−] near- / sub-threshold energies in Au+Au collision

Energy Dependence of Mid-rapidity Yield Ratio

- Comparison with thermal model
 - **>** Grand Canonical Ensemble (GCE) fails at low energies
 - ➤ Canonical Ensemble (CE) with strangeness correlation length $r_c = 2.9 - 3.9$ fm simultaneously describes K_s^0/Λ , Λ/p and Ξ^-/Λ in the whole energies
 - Change of medium properties at the high baryon density region

STAR Collaboration. Phys. Rev. C 102, 034909 (2020) V. Vovchenko, et.al. Phys. Rev. C 93, 064906 (2016) S. Wheaton, et.al. Comput.Phys.Commun. 180 (2009)

Energy Dependence of Mid-rapidity Yield Ratio

STAR Collaboration. Phys. Rev. C 102, 034909 (2020) S.A. Bass, et.al. Prog. Part. Nucl. Phys. 41 (1998) G.C. Yong. Phys. Lett .B 843, 138051 (2023)

- Comparison with thermal model
 - **>** Grand Canonical Ensemble (GCE) fails at low energies
 - > Canonical Ensemble (CE) with strangeness correlation length $r_c = 2.9 - 3.9$ fm simultaneously describes K_s^0/Λ , Λ/p and Ξ^-/Λ in the whole energies
 - Change of medium properties at the high baryon density region
- Comparison with transport model
 - > UrQMD and AMPT models cannot describe all data
 - Strange baryons, especially for the double strangeness
 ±-, are sensitive probes to the medium properties

Baryon to Meson Yield Ratio

- At high energies ($\sqrt{s_{NN}} > 7.7 \text{ GeV}$), Λ/K_S^0 is enhanced in central collisions
- Λ/K_S^0 enhancement is not observed at 3 GeV in the measured p_T range
- Λ/K_S^0 is enhanced in 1.2 < p_T < 1.4 GeV/c above $\sqrt{s_{NN}}$ = 3.9 GeV

Summary and Outlook

• Summary

- > Precision measurements of strange hadrons (K_S^0 , Λ^0 , Ξ^-) production in Au+Au collision at $\sqrt{s_{NN}} = 3.2 4.5$ GeV
- Steeper centrality dependence of Ξ^- mid-rapidity yields (α_S) at $\sqrt{s_{NN}} = 3.0 4.5$ GeV than that at higher energies
- > Canonical suppression of strangeness is observed below $\sqrt{s_{NN}} = 3.5 \text{ GeV}$
- **>** Hadron dominated medium created at $\sqrt{s_{NN}} = 3 \text{ GeV}$
- > Enhancement of Λ/K_S^0 is observed above $\sqrt{s_{NN}} = 3.9$ GeV

• Outlook

> More precise and systematic measurements of strange hadron production from BES-II (K, ϕ , Ω^- etc.) > Further understanding of nuclear matter at high baryon density by data and model

Back up

SQM-2024, June. 3-7

Efficiency Correction

• Acceptance \otimes Reconstruction Efficiency • Feed down Effect π^{-} > Using the embedding data to calculate decay particle > Week decay source reconstruction efficiency $\Box \Xi^- \rightarrow \Lambda^0 + \pi^ \Box \Xi^0 \to \Lambda^0 + \pi^0$ **Au+Au Collision** 0.6 Cent: 0-10% erecto. $\sqrt{s_{\rm NN}} = 3.9 \text{ GeV}, -0.1 < y < 0$ Cent: 10-20% $\square \ \Omega^- \to \Lambda^0 + K^- \text{ (negligible)}$ π^0 Λ^0 Cent: 20-30% 0.4 Cent: 30-40% Cent: 40-60% **Reconstruction Efficiency** Cent: 60-80% 0.2 **Au+Au Collision Reconstruction Efficiency** 0.6 Λ^0 $\sqrt{s_{\rm NN}} = 3.9 \text{ GeV}, -0.1 < y < 0$ $-\Lambda^0$ from Ξ^- Cent: 0-10% 0.6 -1.3 < y < -1.2 Λ^0 from Ξ^0 -0.9 < y < -0.8 -0.5 < y < -0.4-0.1 < y < 0.00.2 0.2 0 0 2 *p*_T [GeV/c] *p*_T [GeV/c]

SQM-2024, June. 3-7

Baryon to Meson Yield Ratio

