

Probing gluon structure with J/ ψ photoproduction in isobaric ultra-peripheral collisions at $\sqrt{s_{NN}} = 200$ GeV with STAR

Zengzhi Li (for the STAR collaboration)

South China Normal University

Hot Quark, May 11-17, 2025, Hefei, China

Supported in part by the

Office of Science

Outline

> Motivation

Analysis details

- Event and track selection
- Signal extraction
- Efficiency correction

> Physics results

- Cross section and model comparison
- Forward neutron dependence

Summary

Equivalent photon in UPCs

- Ultra-peripheral collisions (UPCs)
 - Impact parameter $(b) > 2 R_A \rightarrow$ no hadronic interactions

Equivalent Photon Approximation

- Photon flux $\propto Z^2$
- EM fields \rightarrow quasi real photon (Q² ~ 0)

Photon kinematics

maximum energy	80 GeV in Pb+Pb@LHC
Ε _{γ,max} ~γ(ħc/R)	3 GeV in Au+Au@RHIC
typical p⊤ (& virtuality) р_{тmax} ~ ħc/R	O(30) MeV @ RHIC & LHC

Photon-photon or photon-nuclear collision

Photon-induced J/ψ meson production

- Coherent: probe average gluon distribution in entire nucleus
- Incoherent: probe individual nucleon

Cross section vs. energy at RHIC in AuAu UPCs

L. D. McLerran and Raju Venugopalan, PRD 49 (1994) 2233-2241 L. D. McLerran and Raju Venugopalan, PRD 49 (1994) 3352-3355

STAR experiment

- Time Projection Chamber
 - Tracking
 - Particle identification (dE/dx)

Barrel ElectroMagnetic Calorimeter

• Trigger and identify electron/positron

Time Of Flight Detector

- Time of flight
- Particle identification

Beam-Beam Counters

- Trigger UPC events
- Zero Degree Calorimeter
 - Neutron tagging

		-
Dataset	${}^{96}_{44}Ru + {}^{96}_{44}Ru, {}^{96}_{40}Zr + {}^{96}_{40}Zr$ $\sqrt{s_{\rm NN}} = 200 {\rm ~GeV}$	3
Trigger requirements for UPC events	 No signal in BBCs from both sides 2 ≤ TOF multiplicity ≤ 6 BEMC have back-to-back high tower hits 	
Event selections	• $ V_Z < 100 \text{ cm}$ • BEMC clusters ≤ 6	
Track selections	• TPC hits used to reconstruct tracks ≥ 15 • TPC hits used to calculate dE/dx ≥ 11 • $p_T > 0.2$ GeV/c, $ \eta < 1$	
Electron identification	$ \begin{aligned} \bullet n\sigma_{e} &= \frac{1}{R_{dE/dx}} \log \frac{\langle dE/dx \rangle^{Mea.}}{\langle dE/dx \rangle_{e}^{Th.}} \\ \bullet \chi^{2}_{ee} &= n\sigma_{e1}^{2} + n\sigma_{e2}^{2} < 10 \&\& \chi^{2}_{ee} < \chi^{2}_{\pi\pi} \end{aligned} $	

Coherent J/ ψ raw yield extraction

Simulation input: P. Wang et al., CPC 46 (2022) 074103 W. Zha et al., PLB 800 (2020) 135089

- > A combined fit was applied to extract the coherent J/ ψ yield:
 - Mass and p_T templates from MC (EPA-VMD and QED calculation) + Geant3

$$\frac{d\sigma_{J/\psi}}{dy} = \frac{N_{J/\psi}}{L * acc * eff * BR * \Delta y}$$

- $\succ \sigma_{J/\psi}$: J/ ψ cross section
- ➤ acc: acceptance
- ► *L*: total luminosity
- $\succ \Delta y$: rapidity interval

- $> N_{J/\psi}$: raw J/ ψ yields
- ➢ eff: efficiency
- → *BR*: branching ratio for $J/\psi \rightarrow e^+e^-$

- Rapidity differential cross section of coherent J/ψ:
 - No clear rapidity (y) dependence

Zengzhi Li

Cross section and model comparisons

Model input: S.R. Klein et al., CPC 212 (2017) 258

- Rapidity differential cross section of coherent J/ψ:
 - No clear rapidity (y) dependence

Model comparisons:

- Data ~ 30% lower than IA → Strong suppression in Ru/Zr collisions
- Data ~ 20% lower than STARlight (with nuclear shadowing)

Z dependence of coherent J/ ψ production

> Roughly cancel out photon flux dependence by dividing by Z²

- Data in peripheral collision are found to be flat vs. Z
- Data in isobaric UPCs are consistent within uncertainties
- A hint of enhancement (less than 3σ) in Au + Au w.r.t. isobar

"Two-way ambiguity" in AA collision

$$\frac{d\sigma_{AA\to AA'J/\psi}}{dy} = N_{\gamma/A}(\omega_1) \cdot \sigma_{\gamma A\to J/\psi A'(\omega_1)} + N_{\gamma/A}(\omega_2) \cdot \sigma_{\gamma A\to J/\psi A'(\omega_2)}$$

Solution $f(x) = \frac{1}{\psi} + \frac{1}{\psi}$

How to disentangle smaller and larger x

Nuclei may exchange soft photon(s) leading to nuclear dissociation and neutron emission. The nuclear dissociation probability is related to impact parameter (b)

> Neutron multiplicity (0n0n, 0nXn, XnXn) can help to control b

• $b_{XnXn} < b_{0nXn} < b_{0n0n}$

A solution to the "Photon energy ambiguity"

- Fully corrected data (eff, acc and neutron multiplicity migration...)
 - $d\sigma/dy$ distributions with different neutron multiplicity are flat vs. y

- ➢ Fully corrected data (eff, acc and neutron multiplicity migration...)
 - $d\sigma/dy$ distributions with different neutron multiplicity are flat vs. y

Summary

- ➢ Photon-induced coherent J/ψ cross section in isobar UPCs at $\sqrt{s_{\rm NN}} = 200 \, {\rm GeV}$
 - Strong nuclear suppression is observed
 - A Hint of enhancement (less than 3σ) from Isobar to Au at the top RHIC energy
- Cross sections in different neutron multiplicity are measured
 - Next: disentangle the smaller and larger x contributions

Summary

- ➢ Photon-induced coherent J/ψ cross section in isobar UPCs at $\sqrt{s_{\rm NN}} = 200 \, {\rm GeV}$
 - Strong nuclear suppression is observed
 - A Hint of enhancement (less than 3σ) from Isobar to Au at the top RHIC energy
- Cross sections in different neutron multiplicity are measured
 - Next: disentangle the smaller and larger x contributions

Back up

The same method is used to get the contribution of the coherent J/ψ in the Zr + Zr collision, and the fit results in mass and p_T spectrum are shown

Migration

> Most of the efficiencies have no neutron multiplicity dependence.

➤ One is the interested photo-nclear event which may be in conjunction with the dissociation of the same ion pair, the other is pure lead dissociation event without photo-pomeron interaction. It's dissociative pileup -> "Migration".

The relation between measured yields and true yields for various neutron multiplicity bins can be found in this matrix:

- \succ [*True*] = [*P*]^{−1}[*Measure*]
- > The matrix elements is the migration probability, and can be get by using the zero-bias data

$$\begin{split} P_{0E0W}^{0E0W} &= P_{0E0W}^{ZB} \\ P_{0E0W}^{0EXW} &= P_{0EXW}^{ZB}, P_{0EXW}^{0EXW} = P_{0E0W}^{ZB} + P_{0EXW}^{ZB} \\ P_{0E0W}^{XE0W} &= P_{XE0W}^{ZB}, P_{XE0W}^{XE0W} = P_{0E0W}^{ZB} + P_{XE0W}^{ZB} \\ P_{0E0W}^{XEXW} &= P_{XEXW}^{ZB}, P_{0EXW}^{XEXW} = P_{XE0W}^{ZB} + P_{XEXW}^{ZB}, P_{XE0W}^{XEXW} = P_{0EXW}^{ZB} + P_{XEXW}^{ZB} = 1 \end{split}$$

Migration correction

Selections:

● BBC have no hits in both sides, nTOFMult ≤ 6, nPrimaryTracks = 0 are used to reject the hadronic contribution.

