

Direct virtual photon measurements in Au+Au collisions with STAR BES-II data

Xianwen Bao (for the STAR collaboration)

(baoxianwen@mail.sdu.edu.cn)

Shandong University

Hot Quark, May. 11-17, 2025, Hefei, China

Supported in part by

Introduction

Why direct virtual photon?

- > No strong interaction with medium
- Emitted from initial stage to hadron gas phase stage
- Carry information on energy density, effective temperature and collective motion of QGP

Direct virtual photon production

$$\frac{d^2 N_{ee}}{dM^2} = \frac{\alpha}{3\pi} \frac{L(M)}{M^2} S(M,q) dN_{\gamma} \qquad S(M,q) = dN_{\gamma^*}/dN_{\gamma}$$

- High p_T: mainly prompt photon from earlier stage
- Low p_T: mainly thermal photon from later stage

Thermal radiation

Direct photon:

- > Thermometer: extract $T_{effective}$ from p_T spectra (affected by blue shift effect)
- Chronometer: integrated yield is sensitive to lifetime

May 14, 2025

The Solenoidal Tracker At RHIC

Time Projection Chamber

- Tracking
- Momentum and energy loss
- Acceptance: $|\eta| < 1$; $0 \le \varphi \le 2\pi$

Time Of Flight

- Time of flight
- Particle identification
- Acceptance: $|\eta| < 1$; $0 \le \varphi \le 2\pi$

Collision energies (Au+Au)

- $\sqrt{s_{\rm NN}} = 54.4 \text{ GeV} (\sim 430 \text{M events})$
- $\sqrt{s_{\rm NN}} = 27 \text{ GeV}$ (~250M events)
- $\sqrt{s_{\rm NN}} = 19.6 \,\,{\rm GeV} \,\,(\sim 213 \,{\rm M} \,\,{\rm events})$
- $\sqrt{s_{\rm NN}} = 14.6 \text{ GeV} (\sim 110 \text{M events})$

Beam Energy Scan II

 γ_{direct} : a possible probe of Critical End Point (CEP)

Expect more thermal radiation close to CEP

➢ BES-II: 10-20 times higher statistics than BES-I

> Need high statistics at lower collision energies

Analysis procedure

May 14, 2025

Both in STAR Acceptance

Signal and Hadronic cocktail

Hadronic cocktail :

two-body decay	$\omega o e^+e^-$, $oldsymbol{\varphi} o e^+e^-$, $J/\psi o e^+e^-$, $\psi' o e^+e^-$	
Dalitz decay	$\pi^{0} \rightarrow \gamma e^{+}e^{-}, \eta \rightarrow \gamma e^{+}e^{-}, \eta' \rightarrow \gamma e^{+}e^{-}, \omega \rightarrow \pi^{0}e^{+}e^{-}, \phi \rightarrow \eta e^{+}e^{-}, \phi \rightarrow \eta e^{+}e^{-},$	STAR, Phys.Rev.C 86 (2012) 02490
heavy-flavor decay	$C\bar{C} \rightarrow e^+e^-X$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Drell-Yan process	$DY \rightarrow e^+e^-$	$-\cdots - c\overline{c} \rightarrow ee (PYTHIA) \qquad -$ $-\cdots - b\overline{b} \rightarrow ee (PYTHIA) \qquad -$
		$p+p \otimes s = 200 \text{ CoV}$

Hadronic cocktail was examined in previous dielectron spectra studies in p+p collisions

Xianwen Bao @ Hot Quark 2025

AR

Data vs. Cocktail

STAR, *Phys.Rev.C* 107 (2023) 6, L061901 STAR, *arXiv:*2402.01998

> Dielectron signal is consistent with cocktail in π^0 mass region

> Observed significant excess yield contributed by γ^{*}_{dir}, in-medium ρ at low mass region (LMR, 0.1< M_{ee} < 0.76 GeV/c²)

May 14, 2025

Extract direct virtual photon

> Fit method:

 $\succ \eta/\pi^0$

- Parametrized using Tsallis Blast Wave (TBW) function
- Fixed to 0.470±0.017 at 5 GeV/c

Two component fit

PHENIX, Phys.Rev.C 81 (2010) 034911

- > A clear enhancement at η mass region contributed by γ^*_{dir}
- > Extract direct virtual photon fraction r by fitting cocktail and γ^*_{dir} templates to the data in M_{ee} range **[0.10,0.28]** GeV/c²

Direct virtual photon p_T spectrum

> First measurement of γ_{dir}^* in Au+Au collisions at BES-II in different centrality intervals

STAR

Direct virtual photon dN/dy vs. $dN_{ch}/d\eta$

- > New measurements of $dN_{\gamma_{dir}}/dy$ at STAR
- Strong dN_{ch}/dη dependence
- > The yields at $\sqrt{s_{\text{NN}}}$ = 14.6, 19.6, 27, 54.4, 200 GeV measured by STAR follow a common scaling, with $\alpha = 1.43 \pm 0.04 \pm 0.04$

STAR, *Phys. Lett. B* 770 (2017) 451-45 PHENIX, *Phys.Rev.C* 109 (2024) 044912 ALICE, *arXiv:* 2308.16704 ALICE, Jerome Jung, Hard Probe 2024 presentation

Thermal photon enhancement

Patrick Aurebche et al, *Phys.Rev.* D73:094007,2006 PHENIX, *Phys.Rev.C* 107 (2023) 2,024914 Xiang-yu Wu, Quark Matter 2025 presentation

> Enhancement observed compared with prompt photon yield in 0-80% Au+Au at $\sqrt{s_{\rm NN}} = 14.6 - 54.4 \text{ GeV}$

- Indication of thermal photon contribution
- Measured direct photon yield can be well described by theoretical calculation

May 14, 2025

STAR

Direct virtual photon mass shape

STAR, Phys.Lett.B 770 (2017) 451-458 Peter Lichard, Phys.Rev.D 51 (1995) 6017-6035

1.5<p_<2.0 GeV/c

m_{ee} (GeV/c

PHENIX, Phys. Rev. C 81 (2010) 034911

Since the shape of $f_{dir}(m_{ee})$ is $1/m_{ee}$ smeared by the detector effects, a fit of $R = (\text{data} - \text{cocktail})/f_{\text{dir}}(m_{ee})$ to a constant can be used to test that the excess has the shape expected for internal conversion of direct photons.

- Power-law (1/M) ← dominated by internal conversion from earlier stage
- Exponential (e^{-M}) \leftarrow dominated by thermal radiation from later stage
- \succ Are the mass shapes in different p_T ranges sensitive to these contributions from different stages of evolution?

Strategy:

For γ_{dir}^* mass:

- Apply one **unified** mass shape to fit dielectron mass spectrum in different p_T ranges
- > Different values of q parameter: $\frac{dN}{dM} = C * [1 + (q - 1)\frac{M_{ee}}{R}]^{-\frac{1}{q-1}}$
 - Power-law (1/M) : q~2 Exponential (e^{-M}): q~1

R

0.35

-0.05

May 14, 2025

Xianwen Bao @ Hot Quark 2025

corresponding to the direct photon produced in later to earlier stages respectively

May 14, 2025

Xianwen Bao @ Hot Quark 2025

Direct virtual photon production stage

Transition from exponential to power-law is observed

May 14, 2025

Xianwen Bao @ Hot Quark 2025

Summary

- STAR
- ➢ First measurements of direct virtual photons in Au+Au collisions with BES-II data at RHIC
- > The measured yields from STAR follow a common scaling $\dot{\tilde{z}}$
 - Strong $dN_{ch}/d\eta$ dependence
 - Scaling power α = 1.43 ± 0.04 (stat.) ± 0.04 (sys.)
- Direct virtual photon mass spectrum shape:
 - High p_T (>1GeV/c) \rightarrow **power-law** \rightarrow earlier production
 - Low p_T (<1GeV/c) \rightarrow exponential \rightarrow later production
- **Outlook:** > Fixed-target data at lower collision energies
 - High η region
 - Direct virtual photon polarization/v₂ in Au+Au collisions at 200 GeV from Run23 and Run25

May 14, 2025

Xianwen Bao @ Hot Quark 2025

Summary

Thanks for your attention!

STAR

Thanks for theoretical contribution by X. Wu, A. Alaoui, C. Gale, S. Jeon, J-F. Paquet, B. Schenke and C. Shen

- First measurements of direct virtual photons in Au+Au collisions with BES-II data at RHIC
- > The measured yields from STAR follow a common scaling $\dot{\tilde{z}}$
 - Strong $dN_{ch}/d\eta$ dependence
 - Scaling power α = 1.43 ± 0.04 (stat.) ± 0.04 (sys.)
- Direct virtual photon mass spectrum shape:
 - High p_T (>1GeV/c) \rightarrow **power-law** \rightarrow earlier production
 - Low p_T (<1GeV/c) \rightarrow exponential \rightarrow later production
- **Outlook:** > Fixed-target data at lower collision energies
 - High η region
 - Direct virtual photon polarization/v₂ in Au+Au collisions at 200 GeV from Run23 and Run25

May 14, 2025

Xianwen Bao @ Hot Quark 2025

Backup

May 14, 2025

Compared with theoretical calculation

The direct virtual photon p_T spectra compared with Jean-Francois Paquet theoretical calculation

STAR

May 14, 2025

Effective temperature based on Jetphox

Prompt photon distribution can be comparable with data in

p+p collision at 200 GeV and 63 GeV when μ = 1.1p_T

Table 1: Effective temperature extraction after different prompt photon estimation by jetphox

μ	$54.4 \mathrm{GeV}$	$27~{ m GeV}$	$19.6 { m GeV}$	$14.6 \mathrm{GeV}$
$0.5 p_T$	$316 \pm 44 \pm 11$	$298 {\pm} 78 {\pm} 26$	$259 \pm 42 \pm 5$	$240 \pm 46 \pm 9$
$0.6 p_T$	$301 \pm 36 \pm 11$	$282{\pm}71{\pm}25$	$255{\pm}40{\pm}5$	$234{\pm}44{\pm}9$
$0.7 \ p_T$	$300{\pm}33{\pm}11$	$278{\pm}68{\pm}25$	$248 \pm 38 \pm 5$	$233 \pm 42 \pm 9$
$0.8 \ p_T$	$291 \pm 31 \pm 11$	$275{\pm}67{\pm}19$	$248{\pm}38{\pm}2$	$233 \pm 42 \pm 8$
$0.9 \ p_T$	$288 \pm 30 \pm 11$	$282{\pm}66{\pm}20$	$246{\pm}37{\pm}2$	$233 \pm 41 \pm 8$
$1.0 \ p_T$	$291 \pm 30 \pm 11$	$280{\pm}65{\pm}20$	$245 \pm 37 \pm 2$	$234{\pm}41{\pm}8$
$1.1 \ p_T$	$289{\pm}29{\pm}11$	$279{\pm}64{\pm}16$	$244{\pm}36{\pm}2$	$233{\pm}41{\pm}8$
$1.2 \ p_T$	$289 \pm 29 \pm 11$	$277 \pm 63 \pm 16$	$244{\pm}36{\pm}2$	$233 \pm 41 \pm 8$
$1.3 \ p_T$	$289 \pm 29 \pm 11$	$278{\pm}63{\pm}16$	$242{\pm}36{\pm}2$	$232 \pm 41 \pm 8$
$1.4 \ p_T$	$288 \pm 29 \pm 11$	$276{\pm}63{\pm}16$	$242{\pm}36{\pm}2$	$232 \pm 41 \pm 8$
$1.5 \ p_T$	$286{\pm}28{\pm}11$	$277{\pm}63{\pm}16$	$242{\pm}36{\pm}2$	$232 \pm 40 \pm 8$
$1.6 \ p_T$	$287 \pm 28 \pm 11$	$277{\pm}63{\pm}16$	$242{\pm}36{\pm}2$	$232 \pm 40 \pm 8$
$1.7 \ p_T$	$289 \pm 28 \pm 11$	$277{\pm}62{\pm}15$	$241{\pm}36{\pm}2$	$232 \pm 40 \pm 8$
$1.8 \ p_T$	$289 \pm 28 \pm 11$	$278{\pm}63{\pm}15$	$241 \pm 35 \pm 2$	$232 \pm 40 \pm 8$
$1.9 \ p_T$	$288 \pm 28 \pm 10$	$278{\pm}63{\pm}15$	$242{\pm}36{\pm}2$	$232 \pm 40 \pm 8$
$2.0 \ p_T$	$289 \pm 28 \pm 11$	$278{\pm}62{\pm}16$	$240{\pm}35{\pm}2$	$232\pm40\pm8$

μ : factorisation/renormalisation/fragmentation scale

as the energy **decreases** in different estimation of

prompt photon by Jetphox

Direct virtual photon mass shape (In-Med Hadron, PHSD)

STAR

$dN/dy vs. dN_{ch}/d\eta$

Energy(GeV)	200	54.4	27	19.6
А	6.81e-5	2.83e-5	2.37e-5	1.26e-5
error	5.45e-5	1.49e-5	1.41e-5	8.39e-6

- Obvious dN_{ch}/dη dependence in energies from 200 to 19.6 GeV
- Hint of increasing α with decreasing collision energies from 200 to 19.6 GeV
- ✓ Hint that increasing proportion of prompt photon at lower collision energies at high p_T
- ✓ Thermal photons emitted by QGP rarely extend to higher p_T at lower collision energies

