

Strangeness production in different collision systems and at different collision energies with the STAR experiment

Weiguang Yuan (for the STAR Collaboration) Tsinghua University

- Motivation
- ➢ Results
 - $\checkmark p_{\rm T}$ and rapidity spectra

> Summary

Supported in part by

Office of Science

STAR detector and strange hadron reconstruction

 \checkmark Energy dependence of $R_{\rm CP}$ and $\overline{\rm B}/{\rm B}$, ϕ/K , Ω/ϕ ratios ✓ System size dependence of $R_{\rm CP}$ and Ω/π , Ω/ϕ ratios

Strange hadrons as sensitive & versatile probes of HIC dynamics

- > Small hadronic cross-sections, sensitive to the early stage dynamics of the medium
- \succ Strange hadron yields (dominated by low p_T) - enhancement (w.r.t. p+p) originally proposed as a signature of QGP, now described by statistical/thermal models (GCE or CE)
 - can be used to extract chemical freeze-out parameters
- \succ Hyperon-to-meson enhancement at intermediate p_T - hadronization with parton coalescence/recombination
- \succ Nuclear modification factors (at high p_T) - partonic energy loss in medium

$$R_{ ext{CP}} = rac{[(dN/dp_T)/\langle N_{ ext{coll}}\,
angle]_{ ext{central}}}{[(dN/dp_T)/\langle N_{ ext{coll}}\,
angle]_{ ext{peripheral}}}$$

Energy dependence of strange hadron productions

System size dependence of strange hadron productions

Large and uniform acceptance Excellent particle identification

TOF

inner TPC

Particle identification and reconstruction

$$egin{aligned} &\Lambda(ar{\Lambda}) o p(ar{p}) + \pi^-ig(\pi^+ig)(\mathcal{B}=63.9\%)\ &\Xi^-ig(ar{\Xi}^+ig) o \Lambda(ar{\Lambda}) + \pi^-ig(\pi^+ig)(\mathcal{B}=99.9\%)\ &\Omega^-ig(ar{\Omega}^+ig) o \Lambda(ar{\Lambda}) + K^-ig(K^+ig)(\mathcal{B}=67.8\%)\ &\phi o \mathrm{K}^+ + \mathrm{K}^-ig(\mathcal{B}=49.1\%) \end{aligned}$$

p_{T} Spectra for Λ , Ξ , ϕ and Ω (BESII)

 $\triangleright \Xi$, Ω and Λ low p_T extrapolation: Boltzmann function. $\triangleright \phi$ low $p_{\rm T}$ extrapolation: Levy function.

Rapidity spectra of $\Lambda(\overline{\Lambda})$ and $\mathcal{Z}^{-}(\overline{\mathcal{Z}}^{+})$ at 7.7 GeV

Rapidity distributions of Λ baryon are wider than those of $\overline{\Lambda}$ baryon.

The rapidity distributions of Ξ^- baryon are slightly wider than that of $\overline{\Xi}^+$ antibaryons.

Similar trends observed by NA49. *NA49, PRC 78, 034918 (2008)*

 \geq The ϕ/K^- ratio exhibits no clear dependence on centrality or energy across the range of $\sqrt{s_{NN}} = 7.7$ to 19.6 GeV.

Centrality and Energy dependence of ϕ/K^- ratio

 \succ The ϕ/K^- ratio reaches the GCE limit at $\sqrt{s_{NN}} = 7.7$, 14.6 and 19.6 GeV.

Anti-baryon to baryon ratios

Thermal model prediction: $\ln(\overline{B}/B) = -2\mu_B/T_{ch} + \mu_S/T_{ch}\Delta S$,

Results from thermal model fits are in good agreement with lattice QCD calculation results.

 \triangleright Precise extraction of μ_B/T_{ch} and μ_S/T_{ch} from BES-II data.

Nuclear modification factor (R_{CP}) for strange hadrons

 $\gg R_{CP} = 1$ if nucleus-nucleus collisions are just simple superpositions of nucleon-nucleon collisions.

> R_{CP} tends to be flat and larger than unity at $p_{T} > 2$ GeV/c for energies $\sqrt{s_{NN}} ≥ 14.6$ GeV.

Radial flow
 Quark coalescence
 Cronin effect

11

Nuclear modification factor (R_{CP}) for strange hadrons

 $\sqrt{s_{\rm NN}} = 7.7 \, {\rm GeV}$ $\sqrt{s_{\rm NN}} = 7.7 \, {\rm GeV}$ STAR, Au+Au lyl<0.5 0.5<lyl<10 0-5% 40-60% simple superpositions of nucleon-nucleon <u>0-10%</u> ○ φ collisions. **STAR** Preliminary ----- $\sqrt{s_{\rm NN}} = 14.6 \, {\rm GeV}$ $\sqrt{s_{\rm NN}} = 14.6 \, {\rm GeV}$ $\sqrt{s_{\rm NN}} = 9.2 \, {\rm GeV}$ 0.5<lyl<1.0 lyl<0.5 lyl<0.5 $R_{
m CP}$ GeV/c at $\sqrt{s_{NN}} \leq 11.5$ GeV. $\sqrt{s_{NN}} = 19.6 \, \text{GeV}$ $\sqrt{s_{\text{NN}}} = 19.6 \text{ GeV}$ $\sqrt{s_{\rm NN}}$ = 11.5 GeV ✓ Radial flow lyl<0.5 0.5<lyl<1.0 lyl<0.5 ✓ Quark coalescence ✓ Cronin effect 0 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 6 *p*_{_} (GeV/*c*) $R_{ ext{CP}} = rac{[(dN/dp_T)/\langle N_{ ext{coll}}\,
angle]_{ ext{central}}}{[(dN/dp_T)/\langle N_{ ext{coll}}\,
angle]_{ ext{peripheral}}}$

 $\geq R_{\rm CP} = 1$ if nucleus-nucleus collisions are just $\geq R_{CP}$ continues to increase beyond $p_{T} = 2$

 $\geq R_{\rm CP} = 1$ if nucleus-nucleus collisions are just simple superpositions of nucleon-nucleon collisions.

 $\geq R_{CP}$ tends to be flat and larger than unity at $p_{\rm T} > 2 \text{ GeV/c}$ for energies $\sqrt{s_{\rm NN}} \ge 14.6 \text{ GeV}$.

 $\geq R_{CP}$ continues to increase beyond $p_{T} = 2$ GeV/c at $\sqrt{s_{NN}} \leq 11.5$ GeV.

 \checkmark Radial flow

✓ Quark coalescence

✓ Cronin effect

 \triangleright The enhancement is stronger for Ω and $\Xi^$ compare to Λ and K_s^0 .

Nuclear modification factor (R_{CP}) for strange hadrons

 $\geq R_{\rm CP} > 1$ for higher $p_{\rm T}$ at $\sqrt{s_{\rm NN}}$ = 19.6 GeV and lower energies

 $\gg R_{\rm CP} < 1$ for all $p_{\rm T}$ at $\sqrt{s_{\rm NN}} =$ 200 GeV

> ✓ Strong energy loss in QGP at top RHIC energy

 $\gg R_{\rm CP}$ at $\sqrt{s_{\rm NN}} = 7.7$ GeV is significantly larger than that at $\sqrt{s_{NN}} = 9.2 \text{ GeV}$ and above.

Energy dependence of nuclear modification factor (R_{CP}) for ϕ

Centrality dependence of Ω/ϕ ratio at different energies

 \succ Strong enhancement of Ω/ϕ ratio at intermediate p_{T} is observed in central Au+Au collisions from $\sqrt{s_{NN}} = 7.7$ to 19.6 GeV.

> ✓ Quark coalescence ✓ Cronin effect ✓ Radial flow

Energy dependence of Ω/ϕ ratio at different centralities

> In each 0-10%, 20-30% and 40-60% centrality bin, the Ω/ϕ ratios are consistent with each other within uncertainty from $\sqrt{s_{NN}} = 7.7$ to 19.6GeV.

16

$p_{\rm T}$ Spectra in isobar and O+O collisions

> Ω low $p_{\rm T}$ extrapolation: Boltzmann function.

$\blacktriangleright \phi$ low $p_{\rm T}$ extrapolation: Levy function.

17

Run11 data points Npart shifted for clarity. Errors from Npart not included. p+p: STAR, Phys. Rev. C 75 (2007) 064901 pub. Au+Au: STAR, Phys. Rev. Lett. 98 (2007) 062301 Cu+Cu: STAR, Phys. Rev. Lett. 108 (2012) 072301 Au+Au run19: X. Xu QM2023

System size dependence of $\boldsymbol{\Omega}$ yields

Hint of different N_{part} dependence between isobar and smaller Cu+Cu and O+O systems.

D. Li sQM 24 I. Aggarwal sQM 24 STAR : Phys. Rev. C 75, 064901 (2007) STAR : Phys. Rev. Lett. 108, 072301 (2012) STAR : Phys. Rev. C 79, 034909 (2009) STAR : Phys. Rev. C 83, 034910 (2011)

System size dependence of yield ratios

- Smooth transition of ratios of the strange particles from p+p to A+A collisions.
- Yield ratios of strange particles to pions with more strangeness content decrease faster from high to low multiplicity.

Centrality dependence of Ω/ϕ ratio (different systems)

 \succ In isobar and O+O collisions, Ω/ϕ ratio enhancement is observed with respect to p+p collisions. Enhancement increases from peripheral to central collisions.

 \succ The enhancement of Ω/ϕ ratio is larger in central Isobar collisions than that in central O+O collisions

System size dependence of Ω/ϕ ratio

- Compare Ω/ϕ ratios in different collision systems with similar N_{part} .
- ✓ The enhancement of Ω/ϕ ratio in central O+O collisions is consistent with 40-60% isobar collisions.
- No clear collision system size dependence.

Summary and outlook

Summary

- systems.
- \geq R_{CP} is significantly larger at 7.7GeV compared with other energies for ϕ .
- $\geq \Omega/\phi$ enhancement observed in central Au+Au collisions at $\sqrt{s_{NN}} \geq 7.7$ GeV.
- collisions, similar enhancement at similar N_{part} .

Outlook

- \succ Study strangeness enhancement in even smaller systems: e.g. d+Au.
- \succ Further investigate strangeness production in high-multiplicity O+O events.

Precise measurement of strangeness production in STAR BES-II Energies and different

 $\geq \Omega/\phi$ enhancement increases from peripheral to central collisions in O+O and isobar

Thanks for your attention!!

