

Multi-dimensional measurements of the parton shower in p+p collisions at $\sqrt{s} = 200$ GeV

Monika Robotková for the STAR Collaboration

Nuclear Physics Institute, Czech Academy of Sciences Czech Technical University in Prague

> Hot Quarks 2022 Dao House, Colorado

> > October 15, 2022

Supported in part by the

Jets and clustering algorithms

- Hard scattered partons evolve via showering and hadronizing
- Jets are collimated sprays of hadrons
- Jets are defined using algorithms

Anti- k_{τ} algorithm

Cacciari et al., JHEP 04 (2008) 063

•
$$d_{ij} = rac{\min(1/p_{T_i}^2, 1/p_{T_j}^2)\Delta R_{ij}^2}{R}$$
, $d_{iB} = 1/p_{T_j}^2$

• Clustering starts from the particle with the highest transverse momentum

Cambridge/Aachen (C/A) algorithm

Dokshitzer et al., JHEP 08 (1997) 001

STAR

- $d_{ij}=\Delta R_{ij}^2/R^2$, $d_{i\mathrm{B}}=1$
- Particles are clustered exclusively based on angular separation, ideal for resolving jet substructure

- d_{ij} distance between the particle i and j
- *d*_{*i*B} distance of the particle *i* from the beam
- $p_{\rm T}$ transverse momentum
- ΔR_{ij} distance between the particle *i* and *j* in (*y*, ϕ) space
- R jet resolution parameter

Jet substructure

- Distribution of particles inside the jet
- Parton shower is described by momentum and angular scales

Sketches by J. Thaler

Motivation to study jet substructure

• Jets and their substructure contain information on parton shower (perturbative-QCD) and fragmentation (non-perturbative-QCD) processes

- To study vacuum QCD shower at RHIC energies
- Allow detailed comparisons with QCD predictions and MC generators
- A+A collisions:
 - Study medium modification of intra-jet distributions

ATLAS

Motivation to study jet substructure

- Two ways to study the parton shower:
 - Correlation between substructure observables at the first split
 - Evolution of the splitting kinematics as we travel along the jet shower

STAR experiment

• Located at the *Relativistic Heavy Ion Collider* (RHIC) in *Brookhaven National Laboratory* (BNL)

Full azimuthal angle, $|\eta| < 1$

TPC - *Time Projection Chamber*

- Detection of charged particles for jet reconstruction
- Transverse momenta of tracks: $0.2 < p_T < 30 \text{ GeV/}c$

BEMC - Barrel Electromagnetic Calorimeter

- Detection of neutral particles for jet reconstruction
- Granularity $(\Delta \eta \times \Delta \varphi) = (0.05 \times 0.05)$
- Jet Patch (JP) trigger
- Tower requirements: $0.2 < E_{T} < 30$ GeV

Dataset: p + p collisions at $\sqrt{s} = 200$ GeV, 2012 **Algorithms:** anti- k_{T} + C/A algorithms **Jet resolution parameters:** R = 0.4, R = 0.6 **Transverse momenta of jets:** 15 < $p_{T,iet}$ < 50 GeV/c

SoftDrop

- Grooming technique by removing soft wide-angle radiation in order to mitigate non-perturbative effects
- Connects parton shower and angular tree

Larkoski et al., PRL 119 (2017) 132003

SoftDrop: Larkoski et al., JHEP 05 (2014) 146 • Shared momentum fraction z_a

$$z_{ extsf{g}} = rac{\min(extsf{p}_{ extsf{T},1}, extsf{p}_{ extsf{T},2})}{ extsf{p}_{ extsf{T},1} + extsf{p}_{ extsf{T},2}} > z_{ extsf{cut}} heta^eta,$$

where
$$\theta = \frac{\Delta R_{12}}{R}$$

- $p_{T,1}, p_{T,2}$ transverse momenta of the subjets
- z_{cut} threshold (=0.1)
- β angular exponent (=0)
- ΔR_{12} distance of subjets in the rapidity-azimuth plane

• **Groomed radius** R_{g} • First ΔR_{12} that satisfies SoftDrop condition

2+1D unfolding at the first split

- Measurements are affected by finite efficiency and resolution of the instrumentation
- Our goal is to deconvolve detector effects and obtain truth (particle-level) distribution
- Results are in 3D: z_g vs. R_g vs. p_{T,jet}
- We unfold z_g vs. R_g via 2D iterative Bayesian unfolding using RooUnfold in detector-level $p_{T,jet}$ bins
- Correction for $p_{T,jet}$ is applied:
 - For each particle-level $p_{\text{T,jet}}$ bin, we do projection of this bin onto detector-level $p_{\text{T,jet}}$, and get the weights for detector-level $p_{\text{T,jet}}$ bins
- Unfolded spectra for each detector-level p_{Tiet} bin are weighted and summed
- Additional corrections for trigger and jet finding efficiencies are applied

2+1D unfolding at the first, second and third split

- Splits can be affected by detector efficiency and resolution
- Observables at a given split are smeared
- Splitting hierarchy is modified going from particle level to detector level
- Hierarchy matrix with particle-level splits on x-axis and detector-level splits on y-axis is used to obtain weights for 2D unfolded data

Correlation between substructure observables at the first split

Unfolded z_g distributions with respect to R_g for $20 \le p_T < 25$ GeV/c with R = 0.4

 When we go from small to large R_g we move from collinear hard splitting to softer wide angle s

First, second and third splits

STAR

Comparison with different MC generators

- Data compared with simulations from PYTHIA 6 (STAR tune), PYTHIA 8 (Monash tune) and HERWIG 7 (EE4C tune)
- Leading-order MC models describe trend of the data

Conclusion and future steps

Correlation at the first split

- z_a has a **strong** dependence on R_a
- We can select significantly softer splits by selecting wider angle splits

Splits along the shower

 Observed significantly harder/symmetric splitting at the third/narrow split compared to the first and second splits

Future steps:

Jet substructure measurements in A+A collisions to study effects of medium

Andres et al., arXiv: 2209.11236

Thank you for your attention!

Back up

Correlation between observables at the first split

First, second and third splits

