

Oct 14, 2009

L²³日本物理学会

Jet Studies in STAR via Di-jet Triggered (2+1) Multi-hadron Correlations

Hua Pei for the STAR collaboration

- Jet quenching in heavy ion collisions
- Statistical studies of di-jets: 2+1 correlation technique
 - Analysis technique
 - High-energy photon and charged hadron triggered data
 - Jet shapes, Spectra, and Compare between
 - d+Au analysis
 - Au+Au analysis
- Outlook

Near-side Ridge

arxiv.org:0909.0191

Away-side suppression (flow subtracted)

Phys. Rev. Lett. 93, 252301 (2004)

Oct 14, 2009

- Use 'di-jets' to study jet-medium effects
 - "pin" the 'jet axis' selecting backto-back triggers
 - study correlation w.r.t. this axis

Trigger-trigger correlation

|∆φ–π| **< 0.2 radian**

Sample: Au+Au Central (12%) T1: 5 GeV/ $c < p_T < 10$ GeV/cT2: 4 GeV/ $c < p_T < p_T$ of T1

Δ

Signal reconstruction

Subtract the flow contribution through ZYAM (mixed-event without ZYAM used as cross-check)

Correlated background estimated by di-hadron correlations

The leading triggers are selected from the highest-pT charged hadrons. The second trigger are the highest-pT charged in the back-side cone.

Oct 14, 2009

The leading triggers are selected from the highest-pT charged hadrons. The second rigger are the highest-pT charged in the back-side cone.

The leading triggers are now high-energy clusters from electro-magnetic calorimeter (EMCal), so that we can push trigger energy to a much higher level than those charged particle triggers.

The second trigger are the highest-pT charged in the away-side cone.

We use those efficiency of 2003 d+Au data for our 2008 d+Au analysis.

2008 d+Au $\sqrt{s_{NN}} = 200 GeV \frac{New}{work}$

UNIVERSITY OF ILLINOIS

8

The leading triggers are high-energy clusters from electro-magnetic calorimeter (EMCal).

The second trigger are the highest-pT charged in the away-side cone.

We use those efficiency / flow (centrality, pT) of 2004 Au+Au data for our 2007 Au+Au analysis.

d+Au vs. Au+Au (Central 12%)

T1 (charged): T2 (charged): Assoc (charged): 5 GeV/ $c < p_T < 10$ GeV/c4 GeV/ $c < p_T < p_T$ of T1 1.5 GeV/ $c < p_T < 10$ GeV/c

Oct 14, 2009

9

--- Asymmetric triggers

10

New work

Compare the p_T spectra

Symmetric triggers (Kolja Kauder, QM09)

Asymmetric triggers (New work)

and

Ratios of spectra: Au+Au / d+Au

(Only asymmetric triggers case is shown here due to statistics)

Summary

✓ Studied dijet properties using 2+1 correlation technique

✓ Symmetric trigger pairs:

Similar spectra for same and away side \mathbf{I}

✓No measurable modifications in correlations and pT spectra side from d+Au to central Au+Au collisions

✓ Asymmetric trigger pairs:

✓ Softer spectra on the away side

✓ The correlations and pT spectra are of close shape/level from d+Au to central Au+Au collisions

✓ Next work: Compare the relative energy loss in both cases by the near/away-side integrated p_T/E_T .

- For symmetric triggers:
 - T1 5< p_T <10GeV/c, T2 4< p_T < p_T (T1) <10GeV/c,
 - Between T1 and T2, $|\Delta \phi \pi| < 0.2$
 - Assoc 1.5< p_T <10GeV/c
- For asymmetric triggers:
 - T1 8< E_T <15GeV, T2 4< p_T < E_T (T1) <10GeV/c,
 - Between T1 and T2, $|\Delta \phi \pi| < 0.2$
 - Assoc 1.5< p_T <10GeV/c