

STAR Results from the RHIC Beam Energy Scan

Hui Wang for the STAR Collaboration

RHIC Beam Energy Scan Program

- Turn-off of QGP signatures
- Critical point
- First order phase transition

19.6

62.4

STAR Experiment

STAR Experiment

Strange hadrons: decay topology & ۰ invariant mass

Accessing Phase Diagram

π, K, p Spectra

Slopes: $\pi > K > p$

Inclusive Proton spectra: - less model dependence

π,K,p yields within measured p_T ranges: 70-80% of total yields

Strange Hadron Spectra

Freeze-out Parameters

Search for Turn-off of QGP Signatures

Observables

- Balance Function
 - Sensitive to the charge formation time and relative diffusion

$$B(\Delta \eta) = \frac{1}{2} \left\{ \frac{N_{+-}(\Delta \eta) - N_{++}(\Delta \eta)}{N_{+}} + \frac{N_{-+}(\Delta \eta) - N_{--}(\Delta \eta)}{N_{-}} \right\}$$

• Dynamical Charge Correlations

$$\gamma_{\alpha\beta} = <\cos(\phi_{\alpha} + \phi_{\beta} - 2\Psi_{RP}) >$$

- Elliptic Flow
 - Test of number-of-constituent-quark scaling at lower energies

$$\frac{dN}{d\varphi} \propto \left(1 + 2\sum_{n=1}^{+\infty} v_n \cos\left[n(\varphi - \psi_n)\right]\right)$$

- R_{CP}
- High pT suppression as a clear evidence of energy loss by color objects (quarks) in a color medium (QGP)

Hui Wang for STAR

Balance Function Width

Remove lowest bin when calculating $<\Delta\eta>$

to reduce HBT/Coulomb effects

- Balance function width is sensitive to hadronization time
- Balance functions narrow smoothly with increasing collision energy and as the collisions become more central

ģ

UrQMD Shuffled

√s_{NN} (GeV)

2/4/13

•

Hui Wang for STAR

0.5

10

Ċ,

AR Preliminary

10²

Dynamical Charge Correlations

 $\gamma_{p} M/2(10^{-3})$

2/4/13

Elliptic Flow

Elliptic Flow

Search for Critical Point

Observables

• Particle Ratio Fluctuations

- Related to strangeness and baryon number fluctuations
- Look for non-monotonic behavior of the fluctuations near critical point

$$\nu_{\rm dyn, K\pi} = \frac{\left\langle N_K \left(N_K - 1 \right) \right\rangle}{\left\langle N_K \right\rangle^2} + \frac{\left\langle N_\pi \left(N_\pi - 1 \right) \right\rangle}{\left\langle N_\pi \right\rangle^2} - 2 \frac{\left\langle N_K N_\pi \right\rangle}{\left\langle N_K \right\rangle \left\langle N_\pi \right\rangle}$$

- Net Particle Moments
 - Higher moments of the net particle distributions are predicted to be sensitive to high powers of the susceptibility

$$\sigma = \sqrt{\langle (N - \langle N \rangle)^2 \rangle} \qquad S = \frac{\langle (N - \langle N \rangle)^3 \rangle}{\sigma^3} \qquad \kappa = \frac{\langle (N - \langle N \rangle)^4 \rangle}{\sigma^4} - 3$$

- p_t Correlations
 - Looking for non-monotonic change as a function of incident energy

$$<\Delta p_{t,i} \Delta p_{t,j} >= \frac{1}{N_{event}} \sum_{k=1}^{N_{event}} \frac{C_k}{N_k (N_k - 1)} \qquad C_k = \sum_{i=1}^{N_k} \sum_{j=1, i \neq j}^{N_k} (p_{t,i} - << p_t >>)(p_{t,j} - << p_t >>)$$

Particle Ratio Fluctuations

- STAR data show no significant energy dependence for K/π fluctuations
- STAR data decrease smoothly with decreasing incident energy for p/π and K/p fluctuations
- Disagreement between STAR and NA49 results for K/ π and K/p fluctuations
- No non-monotonic behavior is observed Hui Wang for STAR

Charge Dependent Ratio Fluctuations

√s_{NN} (GeV)

2/4/13

- Unstable particle decays might introduce more correlations for opposite signs
- Same sign fluctuations are also negative, needs further study to investigate the origin
- Antiproton results at the lowest energies are higher due to vanishing antiproton yields Hui Wang for STAR

Higher Moments

- Possible non-monotonic behavior limited to 0-5% only
 - Large statistical and systematical errors make conclusions difficult
- New Negative Binomial baseline study
 - See Gary Westfall's talk on Thursday Hui Wang for STAR

p_t Correlations

- Scaled correlations strongly decrease with decreasing energy below 39 GeV
- No non-monotonic behavior is observed
- Acceptance difference effect under investigation

Search for first order phase transition

Excitation function for freeze-out eccentricity, ε_{r}

- Freeze-out eccentricity sensitive to the 1st order phase transition¹
- STAR data shows smooth decrease with increasing energy. No conclusive deviations from UrQMD model observed

- v₁ is a manifestation of early pressure in the system²
- The v₁ slope for net-proton changes sign between 7.7 and 11.5 GeV

¹ Kolb and Heinz, 2003, nucl-th/0305084

² H. Stocker, Nucl. Phys. A **750** (2005) 121

BES Phase-II proposal

BES Phase-II proposal

√s _№ (GeV)	μ _B (MeV)	BES-I	BES-II	Weeks*	
39	112	130 (M)			
27	156	70 (M)			
19.6	206	36 (M)	400 (M)	2	
15	250		100 (M)	2	
11.5	316	12 (M)	120 (M)	3.5	
7.7	420	5 (M)	80 (M)	10	

* Estimates are based on electron cooling upgrade currently under development and are approximate without electron cooling, the program would require ~150 weeks

- Physics Motivation
 - Net-proton, Ω yield, φ -meson v₂, etc
- Electron Cooling
 - Raise the luminosity by a factor a 3-10 in the range from 3 10 GeV
 - Long Bunches increase luminosity by factor of 2-5

Fixed Target Proposal

√s _{NN} [GeV] (Collider)	√s _{NN} [GeV] (Fixed Target)
19.6	4.5
15	4.0
11.5	3.5
7.7	3.0

- Annular 1% gold target inside the STAR beam pipe
- 2m away from the center of STAR
 - Data taking concurrently with collider mode at beginning of each fill

Summary

- Accessing Phase Diagram:
 - Large $\mu_{\rm B}$ range covered in the phase diagram
- Different features show up at low energies:
 - Turn-off of QGP signatures:
 - Several key sQGP signatures not seen at low energies
 - Critical Point Signatures :
 - Need more statistics
 - First order phase transition:
 - Some hints
- Beam Energy Scan-II:
 - Propose higher statistics data below 20 GeV
 - Fixed target proposal to extend μ_B coverage up to 800 MeV

Thank You

