Production of D^\pm Mesons in Au+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV

at the STAR Experiment
Jan Vaněk for the STAR Collaboration

Nuclear Physics Institute of the Czech Academy of Sciences
Faculty of Nuclear Sciences and Physical Engineering, CTU in Prague

Abstract

Charm quarks are a unique probe of the Quark Gluon Plasma (QGP) created in heavy-ion collisions as they are produced at very early stages of these collisions and subsequently experience the whole evolution of the system. Information on charm quark production and dynamics in the QGP medium can be accessed through open charm hadrons. The STAR experiment, measuring production of open charm, is able to access the STAR detector using data collected in years 2014 and 2016. In particular, we focus on invariant spectra and nuclear modification factors R_{AA} of D^+ mesons measured in three centrality classes of Au+Au collisions. Both D^+ and D^0 R_{AA} show significant suppression in central Au+Au collisions with transverse momentum p_t above 4 GeV/c. We also report a measurement of D^0/D^+ yield ratio which turns out to be in agreement with the PYTHIA 8 calculation, suggesting no modification of the ratio in Au+Au collisions with respect to p+p collisions.

Physics Motivation

- At RHIC energies, charm quarks are produced predominantly through hard partonic scatterings at early stages of Au+Au collisions, making them excellent probe of the QGP
- Suppression of high-p_t D^0 is observed in central Au+Au collisions and is comparable to that of pions and models incorporating both radiative and collisional energy losses, and collective flow $[1]$ $R_{AA}(p_t) = \frac{dN_{AA}/d^2p_t}{N_N dN/d^2p_t}$
- The HFT allows direct topological reconstruction of three body decay $D^0 \rightarrow K^-\pi^+\pi^0$ at mid-rapidity
 - $BR = (8.98 \pm 0.28)\%$, $c = (311.8 \pm 2.1) \mu$m
- The study of D^0 production is complementary to that of D^+ and also provides constraints on the total charm cross-section in heavy-ion collisions

STAR Experiment

- Heavy Flavor Tracker (HFT): 4-layer silicon detector used for precise topological reconstruction of heavy-flavor hadrons, such as D^0
 - MAPS-based pixel detectors – 2 layers, Strip detectors – 2 layers
- Time Projection Chamber (TPC) and Time Of Flight (TOF) detector
 - Particle momentum (TPC) and identification (TPC and TOF)

D^0 Invariant Spectrum

- Invariant spectra of D^+ $[1]$ and D^0 mesons measured in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV
- Topological selection criteria optimized using TMVA $[3]$
- Spectra are fitted by Levy function
- The D^+ results help to constrain the total open charm cross-section and to better understand charm quark hadrochemistry in Au+Au collisions

D^0 Nuclear Modification Factor

- Similar level of suppression and centrality dependence for D^+ and D^0
- High-p_t D^+ and D^0 suppressed in central Au+Au collisions
- Strong interactions between charm quarks and the medium

D^0/D^+ Yield Ratio

- The D^0/D^+ yield ratio is compared to the PYTHIA 8 calculation
- Good agreement in all Au+Au centrality classes
- No modification of the D^0/D^+ yield ratio compared to the PYTHIA 8

Conclusions

- STAR has extensively studied the production of open-charm mesons in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV utilizing the HFT
- The HFT allows direct topological reconstruction of hadronic decays of open-charm mesons
- D^0 invariant spectrum measured for three centrality classes of Au+Au collisions
 - 0-10\%, 10-40\%, 40-80\%
- D^0 nuclear modification factor is consistent with that of D^+
 - D^+ and D^0 mesons are significantly suppressed at high p_t in central Au+Au collisions
 - charm quarks interact strongly with the QGP
- D^0/D^+ yield ratio agrees with the PYTHIA 8 calculation

References

This work is supported by project 17TI10020 of Ministry of Education, Youth and Sports of the Czech Republic and from European Regional Development Fund–Project “Center of Advanced Applied Sciences” No. CZ.02.1.18.01.0000/00003/00000077000293, 2016–2020.

The STAR Collaboration