- Measurements of jet and soft activity in $\sqrt{s_{\mathrm{NN}}} = 200\,\mathrm{GeV}$ p+Au collisions at STAR
- Veronica Verkest for the STAR Collaboration
 - April 15, 2022

Proton-ion collisions at the LHC and RHIC have yielded unexpected trends, notably in measurements of jet nuclear modification factors as a function of event activity (EA). Recent preliminary measurements from STAR in p+Au collisions at $\sqrt{s_{\rm NN}} = 200 \, {\rm GeV}$ demonstrate inherent correlations between high- Q^2 parton scatterings and EA measured at backward (Au-going) rapidities or underlying event (UE) at mid-rapidity. The measurements at STAR disfavor jet 10 quenching as an explanation for the suppression of jet yield observed in high-EA 11 collisions. This leads to an opportunity to probe the early stages of the proton-12 ion collisions. In this talk, we show correlations of backward-rapidity EA with 13 mid-rapidity UE, as well as measurements of EA-dependent modifications to 14 charged hadron spectra and jets. In particular, we present measurements of 15 the UE for various EA selections and discuss its kinematic dependence on jet pseudorapidity (η) and transverse momentum (p_T) as a means of examining 17 the correlation between initial hard scatterings and soft processes. We also investigate the EA dependence of high- $p_{\rm T}$ hadron and jet properties—including fully corrected ungroomed and SoftDrop groomed jet substructure observables to study the impact of initial and final state effects.