

Priyanka Roy Chowdhury*, <u>Katarzyna Gwiździel</u>* (for the STAR Collaboration) *Warsaw University of Technology, Poland

42nd International Conference on High Energy Physics 18-24 July 2024, Prague, Czech Republic

ICHEP 2024

Supported in part by

Motivation $-c/\overline{c}$ interactions with QGP

- ➤ Heavy quarks are produced early in the collisions → good probes to study all stages of the heavy-ion collisions
- Observation in heavy-ion collisions at RHIC: significant D⁰ elliptic flow and suppression at high p_T
 STAR, Phys. Rev
- Strong interaction of charm quarks with the quark-gluon plasma and their thermalisation
- New observables to constrain different models and understand production mechanism
 Final detected

Stages of heavy-ion collisions

STAR, Phys. Rev. C 99 (2019) 34908

D⁰ anisotropy vs. transverse momentum

Femtoscopic correlation

Femtoscopic correlations are observed between pairs of particles with low relative momentum
 Correlations are measured as a function of the reduced momentum difference (k*) of the pair of particles in the rest frame:

- $\succ \text{Femtoscopic Correlation} \rightarrow \text{QS} + \text{FSI}$
 - Quantum Statistics [QS]: Bose-Einstein and Fermi-Dirac
 - Final-State-Interaction [FSI]: Strong and Coulomb interactions
 - > Only strong interaction contributes to $D^0/\overline{D^0}$ - h^{\pm} femtoscopy

Femtoscopic correlations, $\overrightarrow{k^*}$ and $\overrightarrow{r^*}$ (relative separation vector)

Femtoscopy and interaction parameters

The Lednicky–Lyuboshitz analytical model connects the two-particle correlation function with the particle emission source size (r_0) and the s-wave strong interaction scattering amplitudes ($f^{s}(k^*)$):

$$C(k^*) = 1 + \sum_{S} \rho_S \left[\frac{1}{2} \left| \frac{f^S(k^*)}{r_0} \right|^2 \left(1 - \frac{d_0^S}{2\sqrt{\pi}r_0} \right) + \frac{2\Re f^S(k^*)}{\sqrt{\pi}r_0} F_1(Qr_0) - \frac{\Im f^S(k^*)}{r_0} F_2(Qr_0) \right]$$
(2)

where for a given total spin S (S = 0 or S = 1):

- $\Re f^{S}(k^{*})$, $\Im f^{S}(k^{*})$ real and imaginary part of the scattering amplitude for singlet or triplet state,
- $\rho_{\rm S}$ the fraction of pairs with a given spin S ($\rho_0 = \frac{1}{4}$ and $\rho_1 = \frac{3}{4}$),
- d_0^S the effective radius of the strong interaction,

$$Q=2k^*$$
, $F_1(z)=\int_0^z dx \, e^{x^2-z^2}/z$, $F_2(z)=(1-e^{-z^2})/z$ (3)

This model assumes an average separation vector $(\vec{r^*})$ from eq. (1), follows Gaussian distribution:

$$dN^{3}/d^{3}r^{*}e^{-r^{*2}/4r_{0}^{2}} \quad (4)$$

where r_0 is the effective radius of the correlated source.

Katarzyna Gwiździel

Learning outcomes

- Two-particle femtoscopic correlations are sensitive to the interactions in the final state as well as to the extent of the region from which correlated particles are emitted
- Average distance between emission points of correlated pairs (D⁰-hadron) is known as the 'length of homogeneity'
- Femtoscopy may provide additional information about the correlation between charmed mesons and light mesons at the freeze-out

Final-state interaction

- > ALICE data for both p-D and D- π pairs are compatible within (1.1-1.5) σ with the theory predictions obtained from the hypothesis of Coulomb-only interaction
- Small values of $a_0^{D\pi}$ (scattering length) \rightarrow ALICE measurement suggests small strong interactions in the hadronic phase of heavy-ion collision (parameters are consistent with 0)

STAR (Solenoidal Tracker At RHIC)

HFT (Heavy Flavor Tracker)

Particle Identification (PID)

Particle identification using TPC (left) and TOF (right)

The dE/dx bands for π and K overlap around 0.7 GeV/c; K and p bands overlap beyond 1.2 GeV/c
 To distinguish between π, K, and p at higher momenta (> 0.7 GeV/c), TOF information was required

Dataset and D^0 meson reconstruction

 $^{1.6 &}lt; D^0 \ mass < 2.2 \ GeV/c^2$

$$D^0 \rightarrow mixture \ of \ D^0 \ (K^-\pi^+) \ and \ \overline{D^0} \ (K^+\pi^-)$$

Dataset:

- Au+Au, 200 GeV, Run 2014
- Trigger: Minimum bias
- Centrality: 0-80%
- 490M good minimum bias events

D⁰ reconstruction:

- Decay length distance between decay vertex and primary vertex (PV)
- DCA Distance of Closest Approach between:
 - K & π DCA₁₂
 - $\pi \& PV DCA_{\pi}$
 - $K \& PV DCA_K$
 - D⁰ & PV DCA_{D0}
- θ the angle between the D⁰ momentum vector (\vec{P}) and the decay length

D^0 invariant mass and signal purity

The pT dependence of $K\pi$ invariant mass distribution and D⁰ signal purity

- Unlike-sign (K⁻π⁺) pairs from SE construct 'signal'
- Like-sign (K⁻π⁻ and K⁺π⁺) pairs from SE and unlike-sign Kπ pairs from ME represent 'background'
- Invariant mass range for D⁰ signal: 1.82 1.91 GeV/c²
 D⁰ purity:

Signal

Signal + Background

- Higher D⁰ signal purity with increasing p_T bin
- Good S/B ratio for D⁰ signal p_T > 1 GeV/c

Correction of raw correlation function

- ➢ Correlation function C(k*) for D⁰/D⁰-h[±] pairs: C(k*) = N A(k*)/B(k*) (5) where:
 - $A(k^*), B(k^*)$ k* distribution for correlated and uncorrelated pairs,
 - N normalization factor.

Pair-purity corrected correlation function:

$$C_{measured}^{corr}(k^*) = \frac{C_{measured}(k^*) - 1}{PairPurity} + 1 \quad (6)$$

where:

- $C_{measured}(k^*)$ - the raw correlations function calculated using Eq. (5),

- PairPurity = D^0 purity * hadron purity.

 Kaon purity
 Proto

 $(97 \pm 3 \text{ (syst.)})\%$ (99.5 ± 0)
 $p_K < 1 \text{ GeV/c}$ $p_p < 1$

Proton purity (99.5 \pm 0.5 (syst.))% (9 $p_p < 1.2 \text{ GeV/c}$

Results: $D^0/\overline{D^0} - K^{+/-}$ correlation

Comparison to theory predictions of C(k*) for the D⁰-K+ channel: next-to-leading order (NLO) + Heavy Meson Chiral Perturbation Theory (HMChPT) scheme (green and pink bands are for radii of 2 fm and 5 fm, respectively)

Resonance effect of D_{S0}^* (2317)[±] state is NOT visible (large source size or large experimental uncertainties)

Results: $D^0/\overline{D^0} - \pi^{+/-}$ correlation

Comparison to theory calculations of C(k^{*}) for the D⁰-π channel: next-to-leading order (NLO) + Heavy Meson Chiral Perturbation Theory (HMChPT) scheme (green and pink bands are for radii of 2 fm and 5 fm, respectively)

Results: $D^0/D^0 - p^{+/-}$ correlation

- \succ
- Suggesting large emission source size
- Theoretical predictions are needed

Summary & future plans

- D-meson femtoscopy is applicable to probe the interaction behaviour of charmed hadrons and the phase space geometry of the emission source
- ★ Correlation studies between D⁰-K and D⁰- π pairs provide consistent results with no significant correlation and are consistent with large emission source size (~ 5 fm)
- Current statistical precision is not sufficient to make decisive conclusions, however more data are available
- Model study (ex. Lednický–Lyuboshitz) is on the plan to extract interaction parameters and emission source size
- Theoretical inputs are required to connect the observed correlation functions and interaction parameters of charm and light quarks before hadronization

Thank you for your attention!

ICHEP 2024 PRAGUE

42nd International Conference on High Energy Physics

18-24 July 2024 Prague Czech Republic

Backup

Freeze-out dynamics

Properties of nuclear medium

- Example source size measured at RHIC with kaons compatible with model calculations employing hydrodynamics
- Local thermal equilibrium

Katarzyna Gwiździel

Theory predictions of CF for $D\pi$ channels

> Isospin combinations for $D\pi$ channels

$$C_{D^+\pi^0} = \frac{2}{3}C^{D\pi}_{3/2} + \frac{1}{3}C^{D\pi}_{1/2},$$

$$C_{D^0\pi^+} = \frac{1}{3}C^{D\pi}_{3/2} + \frac{2}{3}C^{D\pi}_{1/2},$$

$$C_{D^0\pi^-} = C^{D\pi}_{3/2},$$

- ► Predicted CF for $D^0\pi^+$ and $D^+\pi^0$ channels considered only I = $\frac{1}{2}$ state
- ➤ Depletion at k ~ 215 MeV for R = 1 fm source, produced due to the presence of the lightest D_{0}^{*} state $[D_{0}^{*}(2135)]$
- For R = 2 fm and 5 fm sources, the minimum is present but diluted
- > Interaction in I = 3/2 sector (D⁰ π ⁻) is weaker and repulsive.

Correlation functions for $D\pi$ channels predicted for R = 1, 2 and 5 fm sources represented by red, blue, and green dashed lines, respectively. Corresponding bands show uncertainties with 68% CL.

Correction of detector effects

1. Self correlation: Possible correlation between D⁰ candidates and their daughters were removed.

Hadron (chosen for pairing with D⁰) track id \neq Track id of D⁰ (π^+ K⁻)

2. Track splitting: Track splitting causes an enhancement of pairs at low relative pair momentum k*. This enhancement is created by a single track reconstructed as two tracks, with similar momenta. Track splitting mostly affects identical particle combinations (here, $\pi_{D^0} - \pi$ and $K_{D^0} - K$), as one track may leave a hit in a single pad-row. Due to shifts of pad-rows, it can be registered twice. In order to remove split tracks, we applied the following condition:

No. of hit points / Max no. of hit points > 0.51

Correction of detector effects

3. Track merging

Approach 1:

- $\delta r(i) < mean TPC distance separation \rightarrow `merged' hits$
- δr(i) distance between TPC hits of two tracks
- Pair of tracks with a fraction of merged hits > 5% were removed as 'merged tracks'.
- The technique was adopted from HBT approach. Approach 2:
- $\delta r(i) < \text{threshold} \rightarrow \text{`merged' hits}$ Approach 3:
- SE/ME of $\Delta \eta$ vs $\Delta \phi$ distribution \rightarrow no dip around $0 \rightarrow$ negligible effect of merged tracks
- $\circ \quad \text{With a variation of merging cuts} \rightarrow \text{Negligible effect} \\ \text{on correlation value, no correction applied.}$

Merging of tracks inside TPC

Selection criteria

Event cuts

- $|V_z| < 6.0$ cm.
- $|V_z V_z^{VPD}| < 3.0 \text{ cm.}$
- $|V_x| > 1.0e^{-5}$ cm.
- $|V_y| > 1.0e^{-5}$ cm.
- $\sqrt{[(V_x)^2 + (V_y)^2]} \le 2.0$

Track cuts

- $p_{T} > 0.5 \text{ GeV/c}$
- |dca| > 0.0050 cm.
- nHitsFit ≥ 20
- $|\eta| <= 1.0$

PID cuts for π , *K* & *p*

- $|n\sigma_{\pi}| < 3.0$
- $|n\sigma_{K}| < 2.0$
- $|n\sigma_p| < 2.0$
- $|\frac{1}{\beta} \frac{1}{\beta_{\Pi}}| < 0.03$
- $\left|\frac{1}{\beta} \frac{1}{\beta_{\kappa}}\right| < 0.03$
- $\left|\frac{1}{\beta} \frac{1}{\beta_p}\right| < 0.03$
- $\frac{nHitsFit}{nHitsFitMax} > 0.51$

Hadron purity distributions

