Differential measurements of jet sub-structure observables and their correlations in p+p collisions at $\sqrt{s}=200$ GeV in STAR

Monika Robotkova for the STAR Collaboration

Nuclear Physics Institute Czech Academy of Sciences

ICNFP 2021, Kolymbari, Crete September 1, 2021

Jets

- Hard scattered partons evolve via parton shower and hadronize
- Jets are collimated sprays of hadrons

 Measurements of jet sub-structure serve as an experimental tool for studying QCD - increasingly studied in recent years

SoftDrop

- Grooming technique used to remove soft wide-angle radiation from the jet in order to mitigate non-perturbative effects
- Connects parton shower and angular tree
- Parton shower is described by the momentum and angular scales

Larkoski, Marzani, Thaler, Tripathee, Xue, Phys. Rev. Lett. 119, 132003 (2017)

• Shared momentum fraction z_g

$$z_{
m g} = rac{\min(
ho_{
m T,1},
ho_{
m T,2})}{
ho_{
m T,1}+
ho_{
m T,2}} > z_{
m cut} heta^{eta},$$
 where $heta = rac{\Delta R_{
m 12}}{R}$

• **Groomed radius** R_g - first ΔR_{12} that satisfies SoftDrop condition

 $p_{\mathrm{T},1}, p_{\mathrm{T},2}$ - transverse momenta of the subjets z_{cut} - threshold (0.1) β - angular exponent (0) ΔR_{12} - distance of subjets in the rapidity-azimuth plane

STAR

Monika Robotkova 3 / 29

Overview of jet sub-structure measurements

p+p collisions:

 Allow detailed comparisons with QCD predictions and tuning of MC generators

A+A collisions:

- Study medium modification of intra-jet distributions
- Probe various jet quenching effects (energy loss, broadening, color coherence)

STAR, Phys. Lett. B 811 (2020) 135846

STAR

STAR experiment

TPC - Time Projection Chamber

- Reconstruction of charged particle tracks
- ullet Full azimuthal angle, $|\eta| \leq 1$
- Transverse momenta of tracks: $0.2 < p_T < 30 \text{ GeV}/c$

BEMC - Barrel Electromagnetic Calorimeter

- Reconstruction of neutral component of the jets
- ullet Full azimuthal angle, $|\eta|~<~1$
- Segmentation $(\Delta \eta \times \Delta \phi) = (0.05 \times 0.05)$
- Tower requirements: $0.2 < E_T < 30 \text{ GeV}$

 Located at the Relativistic Heavy Ion Collider (RHIC) in Brookhaven National Laboratory (BNL)

Motivation

- Our goal is to access parton showers through experimental observables
- Two options how to study parton showers:
 - Correlation between sub-structure observables at the first split
 - Evolution of the splitting observables as we travel along the jet shower

Correlation between sub-structure observables at the first split

Monika Robotkova 7 / 29

Correlation between sub-structure observables at the first split

- So far the momentum and angular scales have been measured independently via $z_{\rm g}$ and $R_{\rm g}$ at STAR
- We focus on the correlation between z_g and R_g as a function of $p_{T,iet}$

STAR, Phys. Lett. B 811 (2020) 135846

8 / 29

Correlation between sub-structure observables at the first split

Monika Robotkova 9 / 29

Correction in 2+1D for z_g , R_g , and $p_{T,jet}$

- Results are in 3D \rightarrow $z_{\rm g}$ vs. $R_{\rm g}$ is unfolded in 2D and correction for $p_{\rm T,iet}$ in 1D is needed
 - For each particle-level p_{T,jet} bin, we do projection of this bin into detector-level p_{T,jet}, and get the weights from detector-level p_{T,jet} bins

STAR, Phys. Lett. B 811 (2020) 135846

- We unfold $z_{\rm g}$ vs. $R_{\rm g}$ via iterative Bayesian unfolding in 2D using RooUnfold and unfolded spectra for each detector-level $p_{\rm T,jet}$ bin are weighted and summed
- Additional corrections for trigger and jet finding efficiencies are applied
 Details on systematic uncertainties available in back up

Unfolded $z_{\rm g}$ distributions with respect to $R_{\rm g}$ for $20 \le p_{\rm T,iet} < 25~{\rm GeV}/c$ with R = 0.4

• When we go from small to large R_g we move from collinear hard splitting to softer wide angle splitting

Monika Robotkova 11/29

Unfolded $z_{\rm g}$ distributions with respect to $R_{\rm g}$ for different $p_{\rm T,jet}$ with R=0.4

• Distributions change mildly with varying $p_{T,jet} \to R_g$ is the driving factor for the change in shape of z_g distributions

Evolution of the splitting observables as we travel along the jet shower

Monika Robotkova 13/29

Evolution of the splitting observables as we travel along the jet shower

- Enables a study of self-similarity and effect of restricting available phase space for radiation due to virtuality evolution
- Two ways how to look at the observables:
 - Vary jet kinematics (p_{T,jet}) and compare z_g and R_g distributions at the 1st, 2nd and 3rd splits
 - Vary initiator kinematics
 (p_{T,initiator}) and compare z_g and
 R_g distributions at the 1st, 2nd
 and 3rd splits

Monika Robotkova 14/29

Correction in 2+1D for $p_{T,jet/initiator}$, z_g , R_g

- Splits can be affected by detector efficiency and resolution
- Observables at a given split are smeared
- Splitting hierarchy is modified going from particle level to detector level

Unfolded z_g and R_g distributions at 1st, 2nd and 3rd splits for various $p_{T,iet}$

- Differences between first, second and third splits
- z_g distribution becomes flatter and R_g distribution becomes narrower with higher split, i.e. collinear emissions are enhanced

Unfolded z_g and R_g distributions at 1st, 2nd and 3rd splits for various $p_{T.initiator}$

- Splits have same
 p_{T,initiator} but different positions in the shower
- Distributions show a gradual variation in the available phase space
- Hint of differences in shape for p_{T,initiator} vs. p_{T,jet} → points to jets/splits of varying kinematics → enables a forthcoming detailed study of self-similarity of jet splittings

Comparison with MC models

- Leading order MC models describe the trend observed in data
- Further studies aim to disentangle the impact of perturbative and non-perturbative effects in the MC

First split

STAR

Summary

- \bullet First measurement of $z_{\rm g}$ vs. $R_{\rm g}$ as a function of $p_{\rm T,jet}$ was shown
 - 2+1D unfolding was applied
- Observed significantly harder/symmetric splitting at the third/narrow split compared to the first and second splits
- Jet sub-structure measurements at RHIC energies allow to disentagle perturbative and non-perturbative dynamics of jet evolution

Next steps:

- Compare to different MC models and theoretical calculations
 - Different hadronization (Sherpa) and parton shower (Herwig, Pythia) models
- Sub-structure observables, splitting scale k_T and groomed mass fraction μ , are being studied (not shown in this presentation)
- We are exploring other unfolding methods, e.g. machine learning techniques such as OmniFold (Phys. Rev. Lett. 124, 182001 (2020))

STAR

Thank you for your attention!

0.5

20 / 29

Back up

Monika Robotkova 21 / 29

Jet clustering algorithms

• Jets are defined using algorithms

Anti- k_T algorithm

•
$$d_{ij} = \frac{\min(1/p_{Ti}^2, 1/p_{Tj}^2)\Delta R_{ij}^2}{R}$$
, $d_{iB} = 1/p_{Tj}^2$

 Clustering starts from the particles with the highest transverse momentum

Cambridge/Aachen (C/A) algorithm

- $d_{ij} = \Delta R_{ii}^2 / R^2$, $d_{iB} = 1$
- Particles are clustered exclusively based on angular separation, ideal to be used to resolve jet sub-structure

 $d_{i\mathrm{B}}$ - distance of the particle i from the beam p_{T} - transverse momentum ΔR_{ij} - distance between the particle i and j R - jet resolution parameter

Cacciari, Salam, Soyez, JHEP 0804:063 (2008)

SoftDrop

- Grooming technique used to remove soft wide-angle radiation from the jet
- Connects parton shower and angular tree
 - Jets are first found using the anti-k_T algorithm
 - Recluster jet constituents using the C/A algorithm
 - Jet j is broken into two sub-jets j₁ and j₂ by undoing the last stage of C/A clustering
 - Jet j is final SoftDrop jet, if sub-jets pass the condition on the right, otherwise the process is repeated

Larkoski, Marzani, Thaler, Tripathee, Xue, Phys. Rev. Lett. 119, 132003 (2017)

• Shared momentum fraction z_g

$$z_{\rm g} = rac{{
m min}(p_{{
m T},1},p_{{
m T},2})}{p_{{
m T},1} + p_{{
m T},2}} > z_{
m cut} heta^{eta},$$

where
$$heta = rac{\Delta R_{12}}{R}$$

• Groomed radius $R_{\rm g}$ - first ΔR_{12} that satisfies SoftDrop condition

 $p_{\rm T,1}, p_{\rm T,2}$ - transverse momenta of the subjets $z_{\rm cut}$ - threshold (0.1)

 β - angular exponent (0)

 ΔR_{12} - distance of subjets in the rapidity-azimuth plane

Lund Plane measurement

- Previous ATLAS measurement uses Lund jet plane
- Significant differences in varying hadronization models at high p_{T,jet} at the LHC → we want to study this at lower p_{T,jet}, where non-perturbative effects are expected to be larger
- While Lund jet plane integrates over all splits, we focus on the first split

ATLAS, Phys. Rev. Lett. 124, 222002 (2020)

Monika Robotkova 24 / 29

Data analysis

- p + p collisions at $\sqrt{s} = 200$ GeV, 2012
- ~ 11 million events analyzed

Event and track selection

- Transverse momenta of tracks: $0.2 < p_T < 30 \text{ GeV}/c$
- Tower requirements: $0.2 < E_T < 30 \text{ GeV}$

Jet reconstruction

- Jets reconstructed with anti- k_T algorithm, reclustered with the C/A algorithm
- ullet Transverse momenta of jets: $15 < p_{\mathrm{T,jet}} < 40~\mathrm{GeV}/c$
- Resolution parameters: R = 0.4, R = 0.6
- SoftDrop parameters: $z_{\text{cut}} = 0.1$, $\beta = 0$

$$\frac{\min(p_{\mathsf{T},1},p_{\mathsf{T},2})}{p_{\mathsf{T},1}+p_{\mathsf{T},2}}>z_{\mathsf{cut}}\left(\frac{\Delta R_{12}}{R}\right)^{\beta}$$

STAR

Monika Robotkova 25 / 29

2D Bayesian Unfolding

- 2D iterative Bayesian method implemented in the RooUnfold
- Procedure has following steps:
 - The jets at the detector and particle level are reconstructed separately
 - 2 Jets are matched based on $\Delta R < 0.6$
 - Jets without match missed jet (particle level) and fake jets (detector level)
 - Response between detector level and particle level for observables is constructed
- We use RooUnfold response which contains Matches and Fakes
 - Unfolding is done separately for $p_{\rm T}^{det}$ intervals 15-20, 20-25, 25-30, 30-40 GeV/c
- Then unfolded spectra are weighted with values from our projection and put together
- Together with trigger missed and unmatched weighted spectra we get our fully unfolded spectrum

Monika Robotkova 26 / 29

Systematic uncertainties

- Systematic uncertainties estimated by varying the detector response
 - Hadronic correction fraction of track momentum subtracted is varied
 - ullet Tower scale variation tower gain is varied by 3.8%
 - Tracking efficiency efficiency is varied by 4%
 - Unfolding iterative parameter is varied from 4 to 6
- Systematics due to prior shape variation will be included in the final publication

 $0 \le R_{\rm g} < 0.15$

 $0.15 \le R_{\rm g} < 0.30$

 $0.30 \le R_{\rm g} \le 0.40$

Unfolded $z_{\rm g}$ distributions with respect to $R_{\rm g}$ for $20 \le p_{\rm T,iet} < 25~{\rm GeV}/c$ with R=0.4 and R=0.6

 No significant change of distributions is observed with larger resolution parameter

Art Control of the Co

Monika Robotkova 28 / 29

Comparison with MC models

- ullet Flattering of the splitting $z_{
 m g}$ as we increase split number captured by the MC simulations
- Small differences between PYTHIA and HERWIG seen in the first split

