

Nuclear Tomography with Polarized Photon-Gluon Collisions at STAR

Isaac Upsal for the STAR collaboration Rice University/USTC 2022-09-08

Supported in part by

Office of Science

Talk outline

- Introduction
 - Strong EM fields in A+A collisions
 - Origins of photon polarization
- Photon-gluon interactions
 - Coherent vector-meson production in the environment of A+A collisions
 - Extraction of diffraction information via angular distribution of ρ^0 decayed pions
 - Comparisons between different systems
 - Interference-aided extraction of nuclear size
 - Modification from nuclear dynamics and the limits of coherence
- Summary

Heavy ions as a photon source

- Strong EM fields in A+A collisions. Highly compressed by Lorentz contraction due to fastmoving nuclei
- Make quasi-real photons which are linearly polarized <u>away</u> from their source
- Photons may interact with the other nucleus to produce particles

Photonuclear production in HIC

- Photonuclear vector mesons are produced following $\gamma \mathbb{P} \rightarrow \rho^0$, J/Ψ , etc. $(J^P = 1^-)$
 - Photon from the EM field of one nucleus fluctuates to a $q\overline{q}$ pair, interacts with pomeron or reggeon
 - Photon quantum numbers are $J^{PC} = 1^{--}$
- ρ_0 has been studied in UPCs
 - C. Adler et al. (STAR Collaboration) Phys. Rev. Lett. 89, 272302
 - L. Adamczyk et al. (STAR Collaboration) Phys. Rev. C 96, 054904
 - S. Acharyai et al. (ALICE Collaboration) JHEP06 (2020) 35
 - etc.
- J/ Ψ coherent photoproduction has been seen in nuclear collisions (noted as excess yield at low p_{τ})
 - J. Adam et al. (ALICE Collaboration) Phys. Rev. Lett. 116, 222301
 - J. Adam et al. (STAR Collaboration) Phys. Rev. Lett. 123, 132302

Measure ρ polarization

- Photon polarization vector aligned radially with the "emitting" source
 - Polarizations of measured ρ and its (otherwise identical) virtual partner are exactly 180°, out of sync
 - Hadronically produced ρs (+pions) have no such spin correlation
 - HBT interference, but not polarization-dependent interference
- Polarization dictates finalstate distribution of the $\pi^+\pi^$ pairs – allows for measurement

 $\Delta \phi = \phi(\pi^{+} + \pi^{-}) - \phi(\pi^{+} - \pi^{-})$

Double-slit modulation

- Analogous to double-slit pattern
- Expected modulation in $\Delta \phi$ is $\cos(2\Delta \phi)$ [1]
- Interference strength depends on
 - Nuclear geometry (gluon distribution)
 - Impact parameter (detailed spatial distribution)

[1] Xing, H et.al. J. High Energ. Phys. 2020, 64 (2020).

 $\Delta \phi = \phi(\pi^{+} + \pi^{-}) - \phi(\pi^{+} - \pi^{-})$

Interference in UPCs

Measurement in UPC

- Combine $\pi^+\pi^-$ from events collected by the STAR UPC trigger
- Extremely clean $\rho^{_0}$ peak and obvious low- $p_{_T}$ peak
- The $p_{\scriptscriptstyle T}$ peak comes from a diffractive pattern
 - ρs are coherently photoproduced
 - This peak is consistent with model predictions of photoproduction and has <u>only</u> been explained with this production mechanism
 - Second peak of diffraction pattern visible

UPC results

- Strong modulation in A+A collisions
- Difference in Au+Au and U+U demonstrates sensitivity to nuclear geometry
- This can be verified in p+A, where effect is not expected

Measuring the Nuclear Radius

Interference reveals event config.

- Polarization is always determined by photon direction, ρ momentum by pomeron direction
- Circles represent harmonic angular probability distribution of pions
- "Case 1" \rightarrow max interference, "Case 2" \rightarrow no interference

• Case I : Photon & Pomeron are (anti-) parallel

• Case II : Photon & Pomeron are perpendicular

Test of |t| slope

- Extracted slope depends *significantly* on interference!
- Demonstrates flaw in direct extraction of radius from [t] distributions

Radius from interference

- Radius can be extracted directly from harmonic fit
- At $\pm \pi/2$ smearing from finite photon momentum disappears
- Correct for
 - Smearing from decay kinematics
 - Depolarization from finite size nuclei (4%) and size of probe (transverse size of the ρ wavefunction)
- Extraction removes known effects

Comparison of radii

	Au+Au (fm)	U+U (fm)
Charge Radius	6.38 (long: 6.58, short: 6.05)	6.81 (long: 8.01, short: 6.23)
Inclusive t slope (STAR 2017) [1]	7.95 <u>+</u> 0.03	
Inclusive t slope (WSFF fit)*	7.47 ± 0.03	7.98 <u>±</u> 0.03
Tomographic technique*	6.53 ± 0.03 (stat.) ±0.05 (syst.)	7.29 \pm 0.06 (stat.) \pm 0.05 (syst.)
DESY [2]	6.45 ± 0.27	6.90 ± 0.14
Cornell [3]	6.74 ± 0.06	
Neutron Skin (Tomographic Technique)*	0.17 \pm 0.03(stat.) \pm 0.08(syst.) ~ 2σ	0.44 ± 0.05 (stat.) ± 0.08 (syst.) ~ 4.7σ (Note: for Pb ≈ 0.3)
		*arXiv:2204.01625

- Precision measurement of nuclear interaction radius at high energy
- Uranium shows evidence of (relatively) thick neutron skin, gold consistent with previous measurements

[1] STAR Collaboration, L. Adamczyk, et al., Phys. Rev. C 96, 054904 (2017).
[2] H. Alvensleben, et al., Phys. Rev. Lett. 24, 786 (1970).

[3] G. McClellan, et al., Phys. Rev. D 4, 2683 (1971).

Limits of coherent diffractive production in nuclear medium

Modification of double-slit

- In double-slit analogy hadronic interactions might be semi-opaque screen dividing the holes
- J/Ψ measurements demonstrate coherent photoproduction in peripheral collisions, but do not investigate how these hadronic interactions affect the wave function

EM studies and non-UPC

- UPC studies
 - Clean signal representative of only photon production
 - Unmuddied by effects of hadronic interactions
 - Ideal environment for studying pure photon interactions
- Non-UPCs: greater degree of polarization overlap between photons from their respective nuclei (larger initial signal)
- Signals from pure photoproduction may be modified by the collision medium
- Studying this process in non-UPCs tests our understanding of what "coherence" really means
 - How much can a nucleus break up and still have coherent interactions?
 - How might this breakup affect the overall wave function?

Non-UPC collisions

- Photoproduction signal expected to increase in non-UPCs
 - Theory plot is a prediction of the size of this effect with <u>no</u> hadronic interactions
- Measures both polarization and quantum interference. These have been measured in A+A (global polarization + HBT), but not yet together
- Can polarization and quantum entanglement survive the abundant hadronic interactions of a non-UPC?
 - If so, how might they be modified?

p_{T} distributions

- Au+Au 200 GeV (taken in 2014 and 2016)
- ρ⁰ swamped by combinatorics in central collisions → focus on peripheral collisions
- Hadronic component of the p_{T} distribution can be divided out (OS SS)/SS
- Fit with $p_0 * \text{UPC}_{p_T}(x) + p_1 / (1 + x^2 / p_2)^2$
- Clear signal of coherent photoproduction!
- Distributions fit using UPC results to demonstrate this effect
 - Coherent part of fit from UPC (p₀ parameter)
 is ~ 8 standard deviations for each fit

Subtracting background in $\Delta \phi$

- Dominant background makes subtraction much more important than in the UPC data
- Background estimated by same-sign pairs
- Subtraction method:

$$(S+B)\langle\cos(2\Delta\phi)\rangle_{\rm OS} = B\langle\cos(2\Delta\phi)\rangle_{\rm SS} + S\langle\cos(2\Delta\phi)\rangle_{\rm True}$$
$$\Rightarrow \langle\cos(2\Delta\phi)\rangle_{\rm True} = \frac{S+B}{S}\langle\cos(2\Delta\phi)\rangle_{\rm OS} - \frac{B}{S}\langle\cos(2\Delta\phi)\rangle_{\rm SS}$$
$$= \frac{S+B}{S}\langle\cos(2\Delta\phi)\rangle_{\rm SS} + \frac{S+B}{S}\langle\cos(2\Delta\phi)\rangle_{\rm SS}$$

Mass

Comparison to UPC

- Signal persists in peripheral events
- Wavefunction is surviving potential decoherence from hadronic interactions
- There does not appear to be a strong centrality dependence
 - Though expectation is increasing signal

21

Conclusions

- Clear excess at low p_T is evidence of coherent production
- First measurements of a $cos(2\Delta\phi)$ modulation in the angular distribution of ρ daughters due to photon polarization
 - Strong modulation in measurements of Au+Au and U+U UPC events
 - Interference is also excellent tool for measuring nuclear size
 - This interference survives the strongly-interacting medium of a peripheral HIC (Au+Au data)
 - Possible effects from wave function collapse are relatively small

Backup

Nuclear radius is too large!

- Photo-nuclear measurements have historically produced a |t| slope that corresponds to a mysteriously large source!
- Charged radii for Au and Pb are 6.38 fm and 6.62 fm respectively
- |t| slopes measured in HICs:
 - STAR (2017): 407.8 ± 3 (GeV/c)-2
 - ALICE (Pb): 426 ± 6 ± 15 (GeV/c)-2
- These correspond to an effective radius of > 8 fm!
- Where is this discrepancy coming from?

STAR Collaboration, L. Adamczyk, *et al., Phys. Rev. C* 96, 054904 (2017). J. Adam *et al.* (ALICE Collaboration), J. High Energy Phys. 1509 (2015) 095.

Measurements using Woods Saxon

- New STAR measurementsaradiso .01625
- Is this a deficiency of the exponential fit?
- Use a Woods-Saxon instead, radius is still >1 fm too big
- Uranium has the same issue,
 >1 fm larger than charge radius

New method

- Two-source interference takes place in x-axis (impact parameter direction)
- Interference pattern disappears in y direction
- Can select event orientations

