*yuhu@lbl.gov

Overview of STAR Measurements on Correlations and Fluctuations

Yu Hu (胡 昱)*

for the STAR collaboration

QCD Phase Diagram

B. Mohanty and N. Xu, in Criticality in QCD and the Hadron Resonance Gas (2021) arXiv:2101.09210

Phase structure:

1. QCD Critical End Point

- Crossover at small $\mu_B \left(\frac{\mu_B}{T} < 3\right)$ Lattice
- * 1st order P.T. at large μ_B
- Critical end point
- ***** Recent prediction $\mu_B \sim 500 700 \text{ MeV}$

2. Equation of State and interaction at high μ_B

- Structure of nuclear and hyper-nuclei matter
- Mapping NN, YN, and NNY interactions

D. A. Clarke, et al. (2024), arXiv:2405.101966

Heavy Ion Collision Experiment & STAR Beam Energy Scan – II

- ✤ Varied collision energies: systematically explore high baryon density region (25 < μ_B < 750 MeV)</p>
- Targeted detector upgrades:
 - ✤ iTPC: $|\eta| < 1$ to $|\eta| < 1.6$, lower p_T reach, improved dE/dx
 - ETOF: PID at forward rapidity
 - EPD: Event plane determination & trigger

3

Heavy Ion Collision Experiment

Space and time evolution of particle-emitting source + final state interaction

Net-Proton Distribution

Cumulants

 $\delta n = n - \langle n
angle$

$$C_{1} = \langle n \rangle$$

$$C_{2} = \langle \delta n^{2} \rangle$$

$$C_{3} = \langle \delta n^{3} \rangle$$

$$C_{4} = \langle \delta n^{4} \rangle - 3 \langle \delta n^{2} \rangle$$

$$M. A. Stephanov, PRL 107 (2011) 052301$$

Assumption: Thermodynamic equilibrium **Non-monotonic** $\sqrt{s_{NN}}$ **dependence** of C_4/C_2 of conserved quality – **Existence of a critical region**

Measurement @ BES-I

Observed **hint of non-monotonic trend** in BES-I (3σ)

Robust conclusion require confirmation from precision measurement from BES-II

STAR: PRL 127, 262301 (2021), PRC 104, 24902 (2021) PRL 128, 202302 (2022), PRC 107, 24908 (2023) HADES: PRC 102, 024914 (2020)

Precision Measurement of Net-proton Cumulants @ BES-II

p and \overline{p} are excluded to avoid self correlation

Enlarged rapidity acceptance: |η| < 1 to |η| < 1.6
Improved particle identification: p_T ≥ 125 MeV/c to p_T ≥ 60 MeV/c
Enhanced centrality resolution Refmult3 (|η| < 1) to Refmult3X (|η| < 1.6)
Better control on uncertainty on efficiency:

Net-proton cumulants C_4/C_2 at 0-5% centrality

5% to **2%**

7.7 GeV		19.6 GeV						
stat. error	sys. error	stat. error	sys. error					
Percentage stat. and sys. error in net-proton cumulants								
61%	29%	22%	11%					
Reduction factor in uncertainties, BES-II vs BES-I								
4.7	3.2	4.5	4					

Both statistical and systematical uncertainties are significant reduced in BES-II results

Precision Measurement of Net-proton Cumulants @ BES-II

The precision measurements from BES-II are consistent with the BES-I results
 A smooth variation across centrality and collision energy are observed

CP sensitive observables: C_4/C_2

* C_4/C_2 shows minimum around ~ 20 GeV comparing to the non-CP models and 70 - 80% data * Maximum deviation: 3.2 - 4.7 σ at $\sqrt{s_{NN}} \sim 20$ GeV (1.3 - 2 σ at BES-I)

8

Momentum correlation

ICNFP2024 - Y. Hu

STAR * 2024.8.28

9

https://www.bnl.gov/newsroom/news.php?a=219079

https://www.quora.com/What-does-the-potential-function-for-the-strong-nuclear-force-look-like

Correlation Function (CF)

Kaon Correlation @ High μ_B

STAR * 2024.8.28

Pion & Kaon Correlation @ High μ_B

12

STAR 🛧 2024.8.28

Li'Ang Zhang (STAR), CPOD 2024

Pion Correlation w. Lévy source

$$C = \int d^3 r^* S(\boldsymbol{r}^*) |\Psi|^2$$

Lévy parametrization without final state effects:

$$C^{(0)}(Q) = 1 + \lambda \cdot e^{-|RQ|^{\alpha}}$$

Q: LCMS three-momentum difference $Q = \sqrt{(p_{1x} - p_{2x})^2 + (p_{1y} - p_{2y})^2 + q_{long,LCMS}^2}$ λ : correlation strength α : Lévy exponent

Lévy-stable distribution

an distribution

Lévy-source + Coulomb FSI have a good description of the CF
 α < 2 indicate a non-gaussian shape of the sources at all collision energies

13

Daniel Kincses (STAR), CPOD 2024

p-p & **p-**Λ Correlation Functions

Scattering length (f_0) for p - p:

- Low-E experiment found $f_0 = 7.806 \pm 0.003$ fm
- Correlations in HIC with Lednicky-Lyuboshitz (L-L) approach: $f_0 \sim 7$ fm

Correlation functions for $p - \Lambda$. With L-L approach:

- Simultaneous fit to data in different centralities/rapidity
- Spin-avg scattering length (f_0) and effective range (d_0) :

 $f_0 = 2.32^{+0.12}_{-0.11}$ fm $d_0 = 3.5^{+2.7}_{-1.3}$ fm

- A valid method to study the interaction between baryons **
- Scattering length is much larger in p-p compare with p-Λ

I. Slaus, Y. Akaishi, and H. Tanaka, Phys. Rept. 173, 257 (1989) L. Mathelitsch and B. J. Verwest, Phys. Rev. C 29, 739 (1984).

L. Adamczyk et al. (STAR), Nature 527, 345 (2015), arXiv:1507.07158 Y. Hu (STAR), EPJ Web Conf. 296, 14010 (2024), arXiv:2401.00319

p-d & d-d Correlation Functions

Model pre		
p-d	f_0 (fm)	d_0 (fm)
Doublet	-2.73	2.27
Quartet	-11.88	2.63
d-d	<i>f</i> ₀ (fm)	
Singlet	-10.2	
Quintet	-7.5	

*	 Models which only has two- 		
	body interactions can well		
	describe our p-d and d-d data		

J. Arvieux, NPA 221 (1974) 253 I.N. Filikhin and S.L. Yakovlev, Phys. Atom. Nucl. 63 (2000) 55 / 216 Robert B. Wiringa, et. al, Phys.Rev.C 51 (1995) 38-51

d-A Correlation Functions @ STAR

Corrections

- 1. Purity correction
- 2. Track splitting & merging
- 3. Contamination from $^{3}_{\Lambda}H \rightarrow$

 $\pi^- + p + d \operatorname{decay}$

- ✤ First d-Λ correlation measurements in the heavy-ion collision experiment
- Simultaneous fit to data in different centralities
- ★ Λ feed-down correction not applied due to unknown d-Σ/Ξ correlation
- Momentum smearing effect negligible

Scatterings Length (f_0) and Effective Range (d_0)

J. Haidenbauer, Phys. Rev. C 102 (2020) 3, 034001

J. Haidenbauer, et al. Nucl. Phys. A 915 (2013) 24

STAR 🛧 2024.8.28

Summary

QCD Critical End Point

- Precision measurement of net-proton fluctuations in
 BES-II significantly reduced the uncertainty
- $3.2 4.7\sigma$ maximum deviation for net-proton C_4/C_2 w.r.to non-CP model/70-80% data is observed
 - Need more theory input
- Stay tuned for the measurements at FXT energies

Equation of State

 A large scope of meson-meson and baryonbaryon correlations is studied at STAR

p-A

Model

💻 Data 1σ

Data 2σ

d-∧ ▼ Models

Data 1σ Data 2σ

Data 3o

STAR

Preliminary

30

Data 3o

- First experimental measurement of d-Λ
 correlation function
- FXT program: a unique probe to NN, and YN interactions

Thank you!

Higher order Cumulants Measurements at BES-I

Phase I of BES program (BES-I): Au+Au collisions							
J. Cleymans, et. al, PRC. 73, 034905 (2006)							
	√s _{NN} (GeV)	Events (10 ⁶)	μ _B (MeV)		Net-proton −		
	200	220	25	_∾ 3⊢	$6 \frac{3}{20}$ 0.4 < p _T < 2.0 GeV/c, lyl < 0.5		
	62.4	43	75	k K	ດັ່ງ STAR Data		
	54.4	550	85	<mark>Б</mark> 2–			
	39	92	112	d -			
	27	31	156	ā ₁⊢	T		
	19.6	14	206	- Vet			
	14.5	14	262	∠ 0⊢	•		
	11.5	7	316	-	,⊕ UrQMD -		
	7.7	2.2	420	-1-	HRG CE		
	3.0	140	750	2	5 10 20 50 100 200		
	$\begin{array}{c} \text{STAR : PRL 127, 262301 (2021), PRC 104, 24902 (2021)} \\ \text{: PRL 128, 202302 (2022), PRC 107, 24908 (2023)} \\ \text{HADES: PRC 102, 024914 (2020)} \end{array}$						

Low-E scattering experiment & Effective Range Expansion

Low energy elastic scatterings:

$$k \cot(\delta(k)) = -\frac{1}{a} + \frac{1}{2}r_0k^2 + O(k^4)$$

 $\delta(k)$: phase shift

a: Fermi scattering length at zero energy

 r_0 : effective range

0: higher order contribution

Cross section:

$$\lim_{k \to 0} \sigma_e = 4\pi a^2$$

Binding energy:

а

$$= \gamma - \frac{1}{2}r_0\gamma^2$$

• $B = \frac{\gamma^2}{2\mu}$ • μ : reduced mass

* γ : binding momentum

H. A. Bethe, Phy. Rev. 76 (1949) 38

For the n-p scattering:

$$S_0: a = -23.714 \text{ fm}$$
 $r_0 = 2.73 \text{ fm}$
 $S_1: a = 5.425 \text{ fm}$ $r_0 = 1.749 \text{ fm}$
 $B_d = 2.2 \text{ MeV}$

Lednicky-Lyuboshitz (L-L) Approach

R. Lednicky, et al. Sov.J.Nucl.Phys. 35 (1982) 770 J. Haidenbauer, Phys.Rev.C 102 (2020) 3, 034001 L. Fabbietti, et al., Ann.Rev.Nucl.Part.Sci. 71 (2021) 377-402 Michael Annan Lisa, et al., Ann.Rev.Nucl.Part.Sci. 55 (2005) 357-402

$$C(\boldsymbol{k}^*) = \int d^3 r^* S(\boldsymbol{r}^*) |\Psi(\boldsymbol{r}^*, \boldsymbol{k}^*)|^2$$

Distribution of the relative distance of particle pair

Relative wave function of the particle pair

Major Assumptions

Source

- Smoothness approximation for source function*
- Static and spherical Gaussian source
 - Single particle source: $S_i(x_i, p_i^*)$
 - Pair source (radius R_G): $S(x, p^*) \propto e^{-x^2/2R_G^2} \delta(t t_0)$

Wave function

- S-wave scattering wave
- **\bigstar** Effective range expansion for $\Psi(r^*, k^*)$
- ✤ Approximate the wave function by its asymptotic form

Gaussian source approximation:

$$S(\mathbf{r}^*) = (2\sqrt{\pi}R_G)^{-3}e^{-\mathbf{r}^{*2}/4R_G^2}$$

Scattering amplitude:

Consider only S-wave $\Psi(r^*) = e^{-ir^* \cdot k^*} + \frac{f(k^*)}{r^*} e^{ir^* \cdot k^*}$

-1

$$f(\boldsymbol{k}^*) \approx \left(\frac{1}{\boldsymbol{f_0}} + \frac{\boldsymbol{d_0}{\boldsymbol{k}^*}^2}{2} - i\boldsymbol{k}^*\right)$$

Scattering length: $a \rightarrow -f_0$ Effective range: $r_0 \rightarrow d_0$

Lednicky-Lyuboshitz (L-L) approach

 R_G : spherical Gaussian source of pairs

 f_0 : scattering length

d_0 : effective range

*The smoothness approximation has been checked for expanding thermal sources, found to be very reasonable for large (RHIC-like) sources, but still questionable for smaller sources

Modeling with Separated Spin States

R. Lednicky, et al. Sov.J.Nucl.Phys. 35 (1982) 770 L. Michael, et al. Ann.Rev.Nucl.Part.Sci. 55 (2005) 357-402 J. Haidenbauer, Phys.Rev.C 102 (2020) 3, 034001 Approximating the emission process and the momenta of the particles:

$$C(\mathbf{k}^*) = \int d^3 r^* S(\mathbf{r}^*) |\Psi(\mathbf{r}^*, \mathbf{k}^*)|^2$$

Source Wave function

 $|\Psi({m r}^*,{m k}^*)|^2$ expanded with averaged parameters: $\overline{f_0}$ and $\overline{d_0}$

$$|\Psi(\mathbf{r}^*, \mathbf{k}^*)|^2 \rightarrow f_{S1} |\Psi_{S1}(\mathbf{r}^*, \mathbf{k}^*)|^2 + f_{S2} |\Psi_{S2}(\mathbf{r}^*, \mathbf{k}^*)|^2$$

Spin separated

$$C(k^{*}) = \int d^{3}r^{*}S(r^{*})(\frac{1}{3}|\Psi_{1/2}(r^{*},k^{*})|^{2} + \frac{2}{3}|\Psi_{3/2}(r^{*},k^{*})|^{2})$$
For separated
spin states in d-A
$$\begin{cases} f_{0}(D) \\ d_{0}(D) \end{cases} \qquad f_{0}(Q) \\ d_{0}(Q) \end{cases}$$

Modeling

Source Size with L-L approach

- R_G: spherical Gaussian source of pairs by Lednicky-Lyuboshits approach
- Separation of emission source from final state interaction
- Collision dynamics as expected:

$$R_{G}^{central} > R_{G}^{peripheral}$$

$$R_{G} (p - \Lambda) > R_{G} (d - \Lambda)$$

Correlation Function & Spin States

d-A:
$$|\psi(r,k)|^2 \rightarrow \frac{1}{3} |\psi_{1/2}(r,k)|^2 + \frac{2}{3} |\psi_{3/2}(r,k)|^2$$

◆ Different spin states with different f₀ and d₀ parameters
 ◆ p-Λ correlation: current statistics is not enough to separate two spin states → spin-averaged fit
 ◆ d-Λ correlation: very different f₀ for (D) and (Q) are predicted → Spin-separated fit

