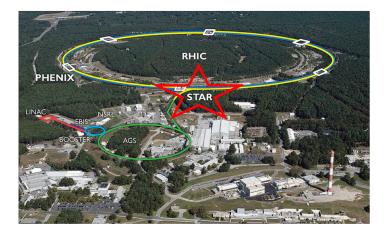
Overview of the STAR forward spin physics

Xilin Liang, for the STAR Collaboration

University of California, Riverside

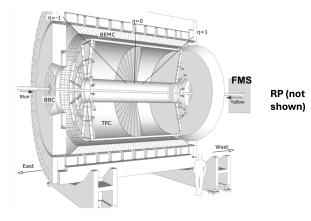
XIII International Conference on New Frontiers in Physics OAC, Kolymbari, Greece Aug. 26 - Sept. 4, 2024



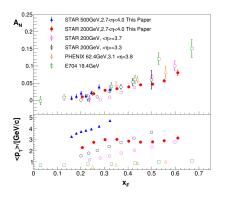
Xilin Liang

Supported in part by

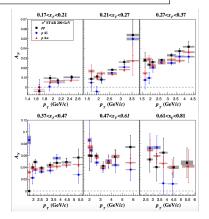
RHIC: Relativistic Heavy Ion Collider


- Located at Brookhaven National Laboratory (BNL) in US
- World's only polarized proton-proton collider with transverse and longitudinal polarization

STAR Forward Detectors


Major STAR forward detectors used in the current STAR analyses:

- Forward Meson Spectrometer (FMS): 2.6 $<\eta<$ 4.2, $\phi\in$ (0,2 $\pi);$ Detect $\gamma,$ $\pi^{0},$ η
- Roman Pot detector (RP): Located about 15 m away from Interaction Point on both sides; Detect slightly scattered protons


Transverse Single Spin Asymmetry (A_N) for Inclusive π^0

(STAR) J. Adam et al., Phys. Rev. D 103, 092009 (2021)

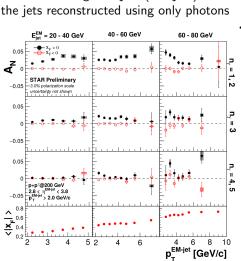
- $\pi^0 A_N$ depends on x_F for 200 GeV and 500 GeV results, consistent with previous STAR results
- $\pi^0 A_N$ shows independence on \sqrt{s}

(STAR) J. Adam et al., Phys. Rev. D 103, 072005 (2021)

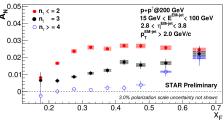
• $\pi^0 A_N$ for p + p, p + AI, and p + Au increases with increasing p_T at 0.17 < x_F < 0.47, but flattens or falls with p_T for larger x_F

STAR Forward Spin Physics

Isolated and Non-isolated $\pi^0 A_N$

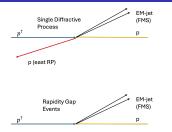

(STAR) J. Adam et al., Phys. Rev. D 103, 072005 (2021) (STAR) J. Adam et al., Phys. Rev. D 103, 092009 (2021) 0.27<x_F<0.37 0.17 < x < 0.210.21<x.<0.27 π^d STAR 200 GeV pp not isolated STAB $n^{\uparrow} + n \rightarrow \pi^{0} + X$ Isolated nº 200 GeV A_N Isolated nº 500 GeV p_ > 2 GeV/c 0.2 Non-isolated nº 200 GeV 2.7 < n < 4.0 Non-isolated #0 500 GeV 3.0/3.4% beam pol. scale uncertainty not shown 0.15 Theory 200 GeV 0.1 Theory 500 GeV 0.0 p _ (GeV/c) p_ (GeV/c) p _ (GeV/c) 0.37<x e<0.47 0.47<x co.61 0.61<x,<0.81 0.14 p_{T} [GeV/c] 0.0 0.2 0.3 0.4 0.5 0.6 XF 3 4 5 p (GeV/c) 3.5 4 45 p_ (GeV/c) p_(GeV/c)

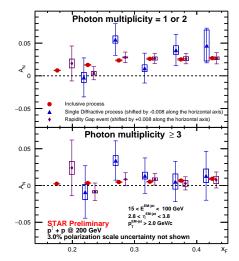
• A_N for isolated π^0 is significantly larger than that for non-isolated π^0 regardless of x_F and p_T


- Isolated π^0 : No other nearby photons
- Indication for large A_N from diffraction?

Xilin Liang

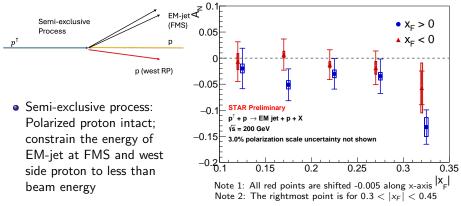
Multi-dimensional Studies for Inclusive EM-jet A_N at 200 GeV


The Electromagnetic jets (EM-jets) are


- The EM-jet *A_N* decreases with increasing photon multiplicity for *x_F* > 0
 - *A_N* is larger for the EM-jets consisting of 1 or 2 photons
- A_N increases with x_F for all the cases of photon multiplicity

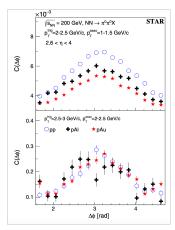
Xilin Liang

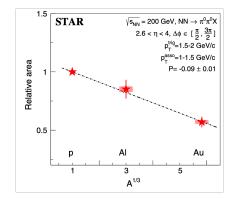
Single Diffractive EM-jet A_N at 200 GeV



- The EM-jet A_N for x_F > 0 (> 2 σ significance of non-zero) is observed for 1 or 2 photon multiplicity EM-jets in the single diffractive process
- *A_N* for the three processes consistent with each other within uncertainty

• The single diffractive processes fail to provide evidence for its significant contribution to large A_N in the inclusive processes


Semi-exclusive Process EM-jet A_N at 200 GeV


- A non-zero A_N for x_F > 0 is observed with 3.3 σ significance for semi-exclusive process
- Sign of A_N is negative. Theoretical inputs are needed to understand the different sign

Nonlinear Gluon Effects in QCD

(STAR) M.S. Abdallah et al., Phys. Rev. Lett. 129, 092501

• First measurement of the A dependence of nonlinear gluon effects

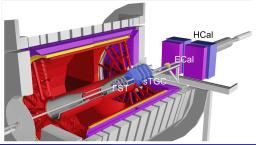
- At low p_T regime, a clear suppression is observed in p + A compared to the p + p data
- Such suppression scaling with A^{1/3} matches gluon saturation models

Current and Future: STAR Forward Upgrade

Coverage: $2.5 < \eta < 4.0$ **Status:**

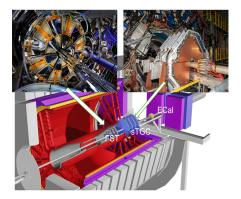
- Installation and commission completed in 2021
- Start taking data since 2022

Requirement:

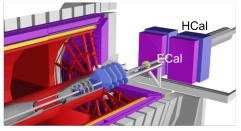

Detector	pp and pA	AA
ECal	\sim 10 % / \sqrt{E}	\sim 20 % / \sqrt{E}
HCal	\sim 50 % / \sqrt{E} + 10%	-
Tracking	Charge separation	$\delta p_T/p_T \sim 20 - 30\%$
	photon suppression	for $0.2 < p_T < 2 \text{ GeV/c}$

Combines:

- Forward Tracking System (FTS)
 - Forward Silicon Tracker (FST)
 - small-strip Thin Gap Chambers (sTGC)
- Porward Colorimeter System (FCS)
 - Electromagnetic Calorimeter (ECal)
 - Hadronic Calorimeter (HCal)


Measures:

- h^{+/-}, e^{+/-} (with good e/h separation)
- Photon, π^0 , jets


STAR Forward Upgrade: Forward Tracking System (FTS)

- Forward Tracking System (FTS):
 - Forward Silicon Tracker (FST)
 - small-strip Thin Gap Chambers (sTGC)

- Forward Silicon Tracker (FST):
 - 3 disks, each with 12 modules
 - Each module includes 3 single-sided double-metal mini-strip sensors (Si from Hamamatsu)
 - Fine granularity in ϕ and coarse in R
 - Material budget $\sim 1.5\%~X_0$ per disk
- small-strip Thin Gap Chambers (sTGC):
 - 4 planes, each with 5 pentagonal modules
 - Double-sided sTGC with diagonal strips give x, y, u in each layer
 - $\bullet~$ Position resolution < 200 $\mu \rm{m}$
 - Material budget $\sim 0.5\%~X_0$ per layer
 - Readout based on VMM chips

Forward Calorimeter System (FCS)

ECal:

- Reuse PHENIX Pb-Scintillator calorimeter
 - 1496 channels: $5.52 \times 5.52 \times 33 \ cm^3$
 - 18 X₀; 0.85 nuclear interaction lengths
- SiPM readout

HCal:

- Fe/Sc (20 mm/3 mm) sandwich
 - 520 channels: $10 \times 10 \times 84 \ cm^3$
 - $\bullet~\sim$ 4.5 nuclear interaction lengths
- Same SiPM readout as ECal

Data Taking and Physics Opportunities with STAR Forward Upgrade

Data taking with STAR Forward Upgrade:

- 2022: $p + p \sqrt{s} = 508 \text{ GeV}$
- 2023: $Au + Au \sqrt{s} = 200 \text{ GeV}$

Cold QCD:

- Sivers asymmetries for hadrons, (tagged) jets, and di-jets
- Collins measurements at high x
- GPD *E_g*: gluon spin-orbit correlations
- Gluon PDFs for nuclei: *R_{pA}* for direct photons & DY
- Test of Saturation predictions through di-hadrons, γ-jets

- 2024: $p + p \sqrt{s} = 200 \text{ GeV} \&$ $Au + Au \sqrt{s} = 200 \text{ GeV}$
- 2025: $Au + Au \sqrt{s} = 200 \text{ GeV} \&$ possible $p + Au \sqrt{s} = 200 \text{ GeV}$

Hot QCD:

- Temperature dependence of viscosity through flow harmonics up to $\eta \sim 4$
- Longitudinal decorrelation up to $\eta \sim 4$
- Global Lambda Polarization: test predictions of strong rapidity dependence

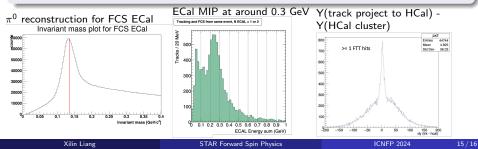
Cold QCD Physics Opportunities with STAR Forward Upgrade

Cold QCD Physics with p + p:

- ★ Sivers asymmetries for charged hadrons, (tagged) jets, di-jets, and diffractive process
 - Allows spin-dependent TMDs for quarks up to $x\sim 0.5$ and gluons down to $x\sim 0.001$
 - Allows to understand better underlying mechanism for the large forward A_N

★ Collins measurements at high ×

- Allow full jet Collins measurements in forward rapidity
- Similar x range as existing SIDIS measurements, with *Q*² values are one to two orders higher
- Similar kinematic coverage with future EIC, enable sensitive universality test with EIC data


Cold QCD Physics with p + A:

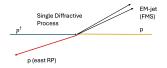
- ★ GPD E_g : gluon spin-orbit correlations
 - Enable measurement at smaller $W_{\gamma p}$, where both the cross section and the signal are expected to be much larger
- ★ Gluon PDFs for nuclei: R_{pA} for direct photons & DY
 - Allow to constrain the nuclear gluon / sea quark distribution at low \times
- ★ Test of Saturation predictions through di-hadrons, γ-jets
 - The di- $h^{+/-}$ measurement can extend both lower and higher (x, Q^2) to map out the Q^2 boundary

Status of the STAR Forward Upgrade

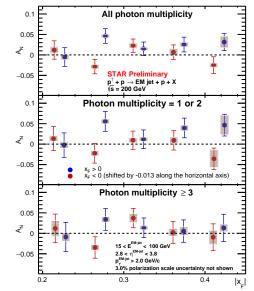
Data production, calibration, and analysis are in progress:

- Data (pre-)productions for p + p \sqrt{s} = 510 GeV (2022) are ready for Forward Upgrade software developments, calibrations, and analyses
- π^0 reconstruction for FCS ECal calibration is developed
- MIP study is ongoing
- Jet reconstruction & energy calibration are in progress
- J/ψ analysis is in progress
- Track matching studies between Forward Tracking and Calorimeter, as well as within calorimeters, are in progress

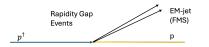
Fruitful results in forward region at STAR:

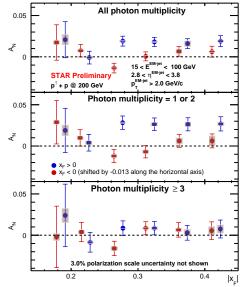

- Large A_N observed in forward π^0 and EM-jets
- First diffractive A_N is studied, but diffractive A_N can not have significant contribution to large A_N
- STAR di- π^0 correlation study shows strong suppression at low p_T in p + A, following expected $A^{1/3}$ dependence

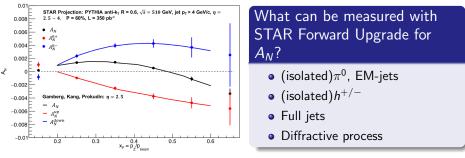
STAR Forward Upgrade will enable a wide range of high-impact measurements, shining light to the future EIC:


- The STAR Forward Upgrade was installed in 2021 and collected data successfully in 2022 and 2023
- The STAR Forward Upgrade will continue to collect data in 2024 and 2025

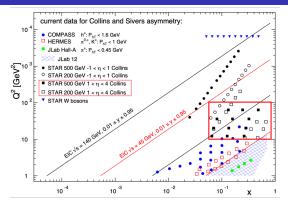
Back up


Single Diffractive EM-jet *A_N* at 200 GeV

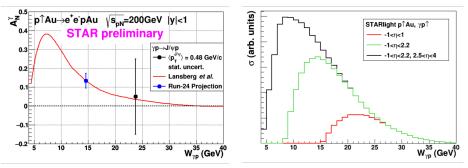

- Single diffractive process: Unpolarized proton intact, with the rapidity gap on the east side $(-5 < \eta < -2.1)$
- The EM-jet A_N for $x_F > 0$ (> 2 σ significance of non-zero) is observed for the case of all photon multiplicity and 1 or 2 photon multiplicity
- The EM-jet with 1 or 2 photon multiplicity has larger A_N than with 3 or more photon multiplicity


Rapidity Gap Event EM-jet A_N at 200 GeV

- Rapidity gap events: Rapidity gap on the east side $(-5 < \eta < -2.1)$
- About 70% of the rapidity gap events are single diffractive process events
- The size of EM-jet A_N for rapidity gap events is similar to that for inclusive process
- The A_N for the EM-jet with 1 or 2 photon multiplicity is the largest

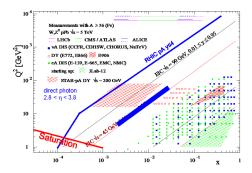


TSSA (A_N) with STAR Forward Upgrade

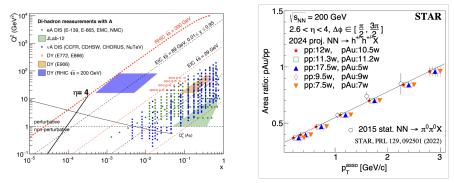

- A_N for full jet reconstruction, combined with charge-sign tagging of a hadron fragment with z > 0.5
 - Projected statistical uncertainties drawn on twist-3 predictions
 - Up to 10 σ separation between plus-tagged and minus-tagged jet A_N
- With STAR Forward Upgrade, it can access to higher x_F with p + p at $\sqrt{s} = 200$ GeV; and access to higher p_T with p + p at $\sqrt{s} = 508$ GeV

Collins Asymmetry with STAR Forward Upgrade

- STAR has performed Collins asymmetry measurement at mid-rapidity
- Similar × range as existing SIDIS measurements
- Q² values are one to two orders of magnitude higher than SIDIS at the same
- STAR forward upgrade will provide unique kinematics coverage for Collins asymmetry measurement
- x up to $\sim 0.5 \rightarrow$ sensitive to valence quark
- Spans in Q^2 by a factor of 6


Generalized Parton Distribution E_g with STAR Forward Upgrade

• Exclusive $J/\Psi A_N$ measurement in ultra-peripheral p + Au collision


- $Q^2 \sim 10 \, GeV^2$ and $10^{-4} < x < 10^{-1}$
- Non-zero A_N would be the first signature of a non-zero GPD E_g for gluons
- GPD E_g is sensitive to spin-orbit correlations
- STAR Forward Upgrade will enable measurement at smaller $W_{\gamma p}$. Both the cross section and the signal are expected to be much larger

Nuclear Parton Distribution Functions with STAR Forward Upgrade

- The STAR Forward Upgrade will enable measurements of R_{pAu} for direct photon and Drell-Yan production at $\sqrt{s_{NN}} = 200 \text{ GeV}$
 - Moderate Q^2 and medium-to-low x regime
 - Direct photons will constrain the nuclear gluon distribution
 - Drell-Yan di-electrons will constrain the nuclear sea quark distribution

Non-linear QCD with STAR Forward Upgrade

- Previous STAR measurements used di- π^0 ; STAR Forward Upgrade will enable studies with di- $h^{+/-}$ with p + Au collisions (possibly in Run-25)
- The di- $h^{+/-}$ measurement can extend both lower and higher (x, Q^2) to map out the Q^2 boundary
- STAR hadro-production measurements are essential to explore the universality of non-linear effects along with the future EIC