STAR experiment "non-spin" highlights

Jakub Češka for the STAR collaboration

Czech Technical University in Prague

ICNFP 2025 17-31 July 2025 Kolymbari, Greece

Supported in part by:

Office of Science

Relativistic Heavy Ion Collider (RHIC)

- Brookhaven National Laboratory (BNL), NY, USA
- Designed for heavy ion collisions, to study QGP and the spin structure of the proton
- World's only polarised proton collider
- Future site of the EIC

RHIC collider

- Various collision systems and programmes
 - Beam Energy Scan (BES) I and II
 - STAR FiXed Target (FXT) mode
 - Isobar collisions (Zr+Zr, Ru+Ru)
 - O+O collisions
- Top centre-of-mass energy of 510 GeV for p+p, 200 GeV/nucleon for A+A
- 5 major experiments
 - PHOBOS
 - BRAHMS
 - PHENIX
 - STAR
 - o sPHENIX

RHIC legacy

- RHIC and its experiments built with QGP in mind
- QGP observed at RHIC!

Solenoidal Tracker at The RHIC (STAR)

- Commissioned in 2000
- Forward upgrade (commissioned 2022;
 2.5 < η < 4)
- Event Plane Detector(EPD)
- Endcap Time of Flight (ETOF)
- Tracking
- Particle IDentification (PID)

QCD diagram studies

QCD phase diagram

- Matter state depends on temperature T and net baryon density/baryon chemical potential $\mu_{\rm B}$
- BES-II dataset covers $100 < \mu_{\rm B} < 760 \, {\rm MeV}$
- Investigation of phase transition between hadronic matter and QGP
 - 1st order and cross-over transitions
- Probing for critical point

Net-proton cumulants

cumulants

$$C_1 = \langle N \rangle \equiv \mu \text{ [mean]}$$

 $C_2 = \langle (N - \mu)^2 \rangle \equiv \sigma^2 \text{ [variance]}$
 $C_3 = \langle (N - \mu)^3 \rangle$
 $C_4 = \langle (N - \mu)^4 \rangle - 3\langle (N - \mu)^2 \rangle^2$

standardized moments

$$S\sigma = C_3/C_2$$
 [skewness]
 $\kappa\sigma^2 = C_4/C_2$ [excess kurtosis]

- Net-baryon (N_B N_{Bbar}) expected to fluctuate near a critical point
- Cumulants of conserved charge distributions related to correlation length in medium
- Higher order cumulant ratios predicted to be sensitive to the critical point existence

Net-proton cumulants

UrQMD

- Hadron transport model
- No phase transition/partonic phase included

- Precise measurements from BES-II
- Final results for collider energies from 7.7 to 19.6 GeV and FXT energies 3.2, 3.5 and 3.9 GeV in 0-5% central Au+Au collisions
- In FXT energies C₄/C₂ consistent with UrQMD predictions
- Deviation seen at higher energies

Net-proton cumulants

- BES-II data 4.5 times better σ_{stat} and 3-4 times σ_{sys}
- $2-5\sigma$ deviation from calculations without CP, peripheral data

Collectivity and flow

Flow

$$f(\phi; y, p_t) \propto 1 + 2\sum_{n=1,2} v_n(y, p_t) \cos(n\phi)$$

- Collective behaviour of particles produced in relativistic collisions
- Particle azimuthal distribution (w.r.t. collision system planes) can be Fourier decomposed
- Harmonic coefficients v_n called flow coefficients, proportional to eccentricities ε_n
- Directed flow characterised by v_1 , elliptic flow by v_2 and triangular flow by v_3

Directed flow

- Sensitive to early time interactions and Equation of State (EoS)
- Kaons show similar sign change as protons, minimum between
 4.5 and 7.7 GeV
- ϕ meson v_1 large in high μ_B region, comparable to proton and Λ

Collectivity in small systems

- d+Au and O+O similar-sized systems, but large difference in ε_2
- Scaling with geometry
- Origin of small-system v_2 from geometry response

Non-flow subtraction

Collectivity in small systems

 Both v₂ and v₃ scale well with eccentricities from sub-nucleon Glauber model

Jet suppression

- Hard scatterings in high-energy particle collisions may produce jets - collimated showers of hadrons
- Jets interact strongly with hot and dense medium (QGP) produced in heavy-ion collisions
- The interaction leads to energy reduction called "jet quenching"
 - suppression of high-p_T particles and back-to-back correlations first observed at the RHIC

Hadrons and jets in O+O

• Indication of high- p_T jet and hadron suppression in O+O collisions

Semi-inclusive h triggered jets

Hyperons

Femtoscopy

- Correlation femtoscopy a study of hyperon-nucleon (Y-N) interactions
- New isobar data available
 - o Zr+Zr, Ru+Ru
 - o A = 96
- Strange di-baryon bound states?

S(r): Source function $\Psi(\vec{k}^*, \vec{r})$: Pair wave function $k^* = \frac{1}{2} |\vec{p}_a - \vec{p}_b|$, relative momentum \vec{r} : relative distance

$p-\Omega$ correlations

$$BE_{p\Omega} = \frac{1}{2m_{p\Omega}d_0^2} (1 - \sqrt{1 + \frac{2d_0}{f_0}})^2$$

- Depletion in $C(k^*)$ at $k^* \sim 30-100$ MeV/c bound state?
- Lednický-Lyuboshitz fit to extract strong interaction parameters
- Bound states have negative scattering length f_0

$p-\Omega$ correlations

- Negative scattering length f_0 of for p- Ω
- First experimental evidence of strange di-baryon bound state
- Positive f_0 for p- Ξ and p- Λ

Light nuclei spectroscopy

- Y-N interactions important for neutron star equation of state and hypernuclei structure
- Most accurate extraction of hypertriton binding energy
- Measurements also for t-Λ and
 ³He-Λ correlations

Hypernuclei measurements

- Hypernuclei important for Y-N interaction understanding
- First measurement of A=5 hypernuclei
- Thermal model describes Λ , overestimates yields for $_{\Lambda}{}^{3}H$, $_{\Lambda}{}^{4}H$, $_{\Lambda}{}^{4}He$ and slightly underestimates $_{\Lambda}{}^{5}He$ in high μ_{B} region
 - feed-down corrections not included for ⁵He

Nuclear shape imaging

Nuclear imaging in HIC

- Traditionally nuclear shapes examined in low-energy spectroscopic experiments
- In high-energy collisions eccentricity $\boldsymbol{\varepsilon}_2$ and inverse area of nuclear overlap d_{\perp} proportional to experimental observables v_2 and δp_{\perp}
- Ratios between well known systems (Au+Au) and unknown systems (U+U) minimises hydrodynamic evolution influence, focusing on nuclear geometry

$$R(\theta, \varphi) = R_0 \left(1 + \beta_2 \left[\cos \gamma Y_{2,0} + \sin \gamma Y_{2,2} \right] \right)$$

$$\varepsilon_2 = \frac{\langle x^2 \rangle - \langle y^2 \rangle}{\langle y^2 \rangle + \langle x^2 \rangle} \quad d_{\perp} \propto 1 / \sqrt{\langle x^2 \rangle \langle y^2 \rangle}$$

Nuclear imaging in HIC

Nuclear imaging in HIC

- Nuclear structure propagates into v_n and δp_T
- Extracted β_{211} = 0.297 ± 0.015 and $\gamma_{11} = 8.5^{\circ} \pm 4.8^{\circ}$ - consistent with low energy conventional measurements
- Large quadrupole deformation, small triaxiality in ground state

STAR: 25 years and beyond!

- BES-II:
 - EoS in different regions
 - critical point and phase boundary search
 - Y-N and N-N interactions
- Run 23 25:
 - STAR forward upgrade
 - 5k DAQ rate
 - high statistics Au+Au and p+p
- Run 22 25:
 - improved kinematic reach for hard probes
 - overlap with LHC
 - forward physics, connection with EIC

$\sqrt{s_{ m NN}}$ (GeV)	Species	Number Events/ Sampled Luminosity	Year
200		$8B+5B / 1.2 \text{ nb}^{-1}+20.8 \text{ nb}^{-1}$	2023+2024+ 2025 (20 cryo-weeks)
200	Au+Au	$8B+9B / 1.2 \text{ nb}^{-1}+28.6 \text{ nb}^{-1}$	2023+2024+ 2025 (28 cryo-weeks)

[STAR BUR Runs 24-25]

Thank you very much!

Backup

Centrality

- Impact parameter b important for classification of nuclear collisions
 - distance between the center of the two nuclei
- Not possible to measure directly
- Glauber model used to connect impact parameter and experimentally accessible observables

Rapidity scan of cumulants

- Wider y, p_T windows of measurement enhance potential critical contribution
- Deviation from UrQMD increases with y acceptance and near 20 GeV

