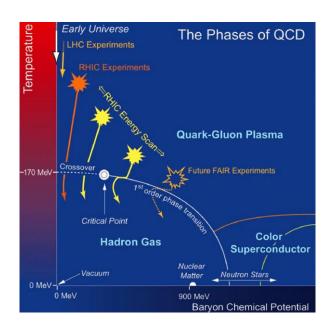


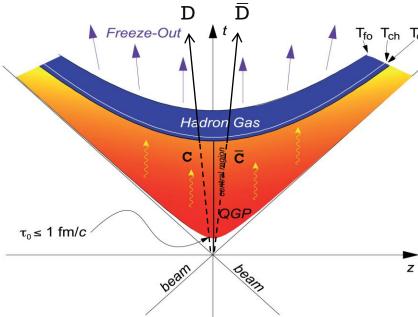
Measurement of open-charm hadrons in Au+Au collisions at $\sqrt{s_{\rm NN}}=200$ GeV by the STAR experiment

Jan Vanek, for the STAR Collaboration

Nuclear Physics Institute, Czech Academy of Sciences


ICNFP 2021

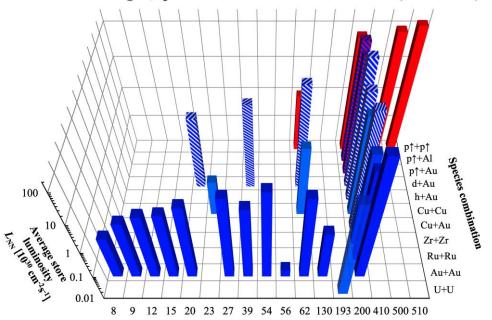
23.08. - 02.09.2021

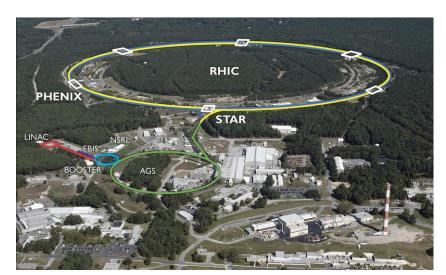


PHYSICS MOTIVATION

- Quark-Gluon Plasma (QGP) is the state of matter where quarks and gluons are no longer trapped inside colorless hadrons
- QGP can be studied using relativistic heavy-ion collisions
- At RHIC energies, charm quarks are produced predominantly through hard partonic scatterings at early stage of Au+Au collisions
 - They experience the whole evolution of the medium

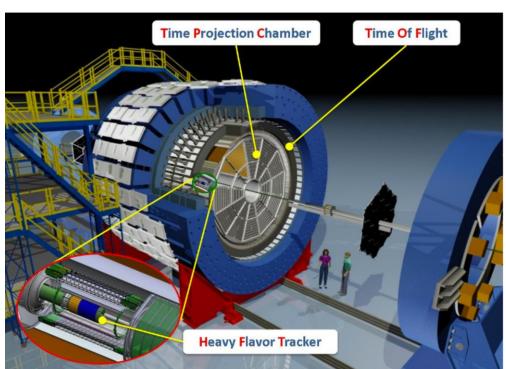
RELATIVISTIC HEAVY-ION COLLIDER




- Relativistic Heavy-Ion Collider (RHIC) is located in Brookhaven National Laboratory (BNL), Long Island, New York
 - RHIC is 3.8 km long with 6 interaction regions (IR)
 - STAR is located at 6'o clock IR and is the only running experiment at RHIC today

RHIC is a very versatile collider:

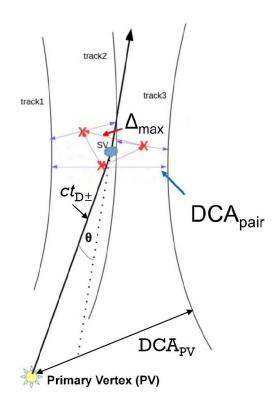
RHIC energies, species combinations and luminosities (Run-1 to 20)


Center-of-mass energy $\sqrt{s_{NN}}$ [GeV] (scale not linear)

STAR DETECTOR

- Solenoidal Tracker At RHIC
- Heavy Flavor Tracker (HFT, 2014–2016) is a 4-layer silicon detector
 - MAPS 2 innermost layers (PXL1, PXL2), Strip detectors 2 outer layers (IST, SSD)
- Time Projection Chamber (TPC) and Time Of Flight (TOF)
 - Particle momentum (TPC) and identification (TPC and TOF)

STAR: PRL 118, 212301, (2017) 140 120 100 σ_{XY} (µm) 60 40 20 (a) 0.5 1.5 Total Momentum p (GeV/c)



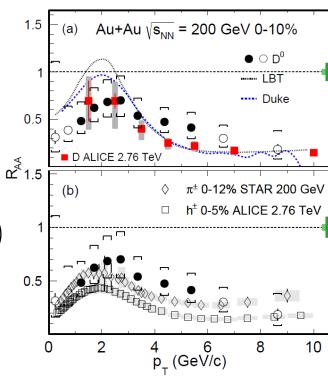
OPEN-CHARM MEASUREMENTS WITH THE HFT

- STAR took data with the HFT in 2014 and 2016 for Au+Au collisions at $\sqrt{s_{NN}}=200~\text{GeV}$
- The HFT allows direct topological reconstruction of opencharm hadrons through their hadronic decays

Mothers*	Decay channel*	<i>cτ</i> [μ m]	BR [%]
$\overline{ D^+ (c \bar{u}) }$	$D^+ \to K^- \pi^+ \pi^+$	311.8 ± 2.1	8.98 ± 0.28
${\sf D}^0 \ (c ar d)$	$D^0 \to K^- \pi^+$	122.9 ± 0.4	3.93 ± 0.04
$D_s^+(c\bar{s})$	$D_s^+ \to \varphi \pi^+ \to K^- K^+ \pi^+$	149.9 ± 2.1	2.27 ± 0.08
Λ_c^+ (udc)	$\Lambda_c^+ \to \mathbf{K}^- \mathbf{\pi}^+ \mathbf{p}$	59.9 ± 1.8	6.35 ± 0.33

*Charge conjugate particles are also measured

Cartoon of D[±] decay topology


DO NUCLEAR MODIFICATION FACTOR

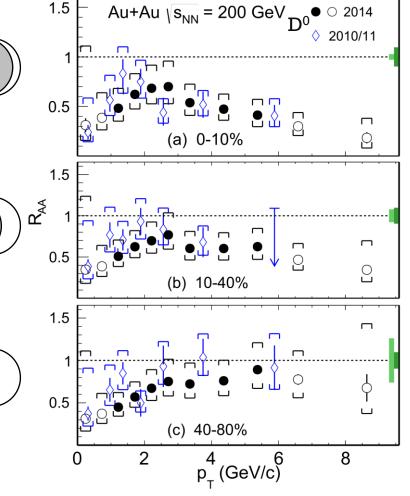
• Nuclear modification factor:

$$R_{\rm AA}(p_{\rm T}) = \frac{\mathrm{d}N^{\rm AA}/\mathrm{d}p_{\rm T}}{\langle N_{\rm coll}\rangle \,\mathrm{d}N^{\rm pp}/\mathrm{d}p_{\rm T}}$$

- Reference: combined D⁰ and D* measurements in 200 GeV p+p collisions using 2009 STAR data
- D⁰ mesons suppressed in central Au+Au collisions
- Suppression of D^0 mesons at high p_T comparable to light flavor hadrons at RHIC and D mesons at LHC
- Reproduced by models incorporating both radiative and collisional energy losses
- Strong interactions between charm quarks and the medium

 $\begin{array}{l} D^0 \, (STAR) \colon Phys. \; Rev. \; C \; 99, \, 034908, \, (2019). \\ \pi^{\pm} \, (STAR) \colon Phys. \; Lett. \; B \; 655, \, 104 \, (2007). \\ D \, (ALICE) \colon JHEP \; 03, \, 081 \, (2016). \\ h^{\pm} \, (ALICE) \colon Phys. \; Lett. \; B \; 720, \, 52 \, (2013). \\ LBT \colon Phys. \; Rev. \; C \; 94, \, 014909, \, (2016). \\ Duke \colon Phys. \; Rev. \; C \; 97, \, 014907, \, (2018). \end{array}$

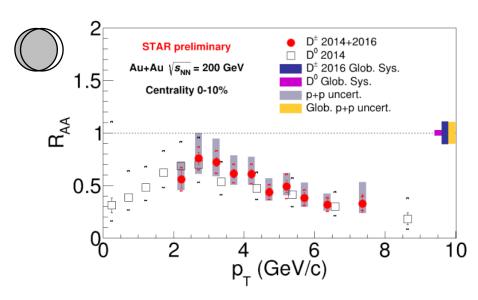
DO NUCLEAR MODIFICATION FACTOR

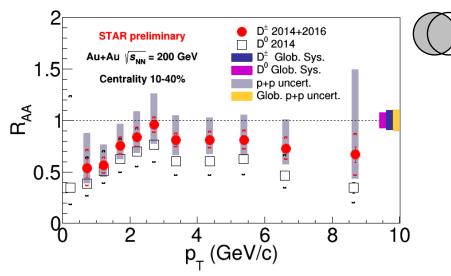


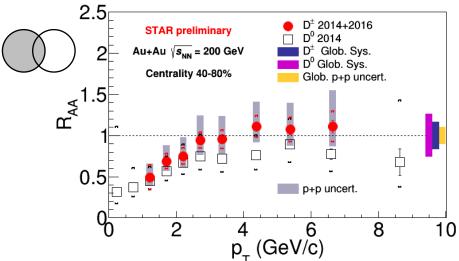
• Centrality dependence of D^0 mesons R_{AA}

 Suppression at high p_T increases towards more central collisions

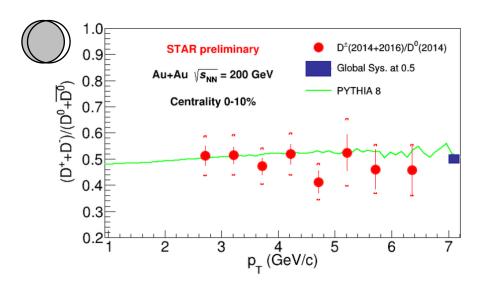
 Low-p_T D⁰ suppressed for all studied centrality classes of Au+Au collisions

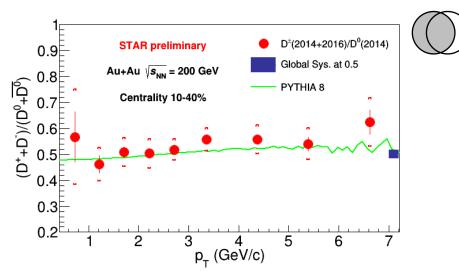

• Integrated $R_{AA} < 1$ for D^0 mesons in central and peripheral collisions

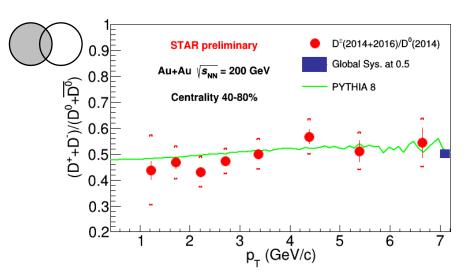



D⁰ 2014 (STAR): Phys. Rev. C 99, 034908, (2019). D⁰ 2010/11 (STAR): Phys. Rev. Lett. 113, 142301 (2014), erratum: Phys. Rev. Lett. 121, 229901 (2018).

D⁺ NUCLEAR MODIFICATION FACTOR



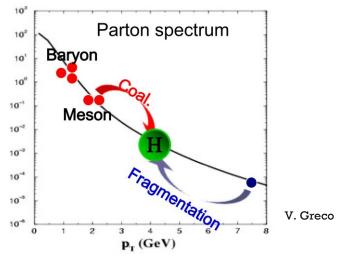


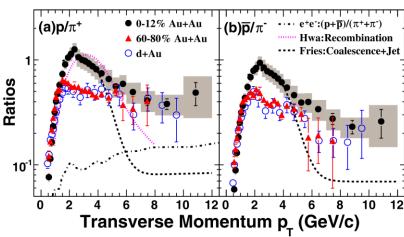

- Reference: combined D⁰ and D* measurements in 200 GeV p+p collisions using 2009 data
- Similar level of suppression and centrality dependence for D[±] and D⁰
- High-p_T D[±] and D⁰ suppressed in central Au+Au collisions
 - Strong interactions between charm quarks and the medium

D[±]/D⁰ YIELD RATIO

- The D[±]/D⁰ yield ratio in Au+Au collisions is compared to that from MC simulation of p+p collisions (PYTHIA 8)
 - Good agreement in all Au+Au centrality classes
- No modification of the D[±]/D⁰ yield ratio compared to PYTHIA

HADRONIZATION IN A+A COLLISIONS


Fragmentation

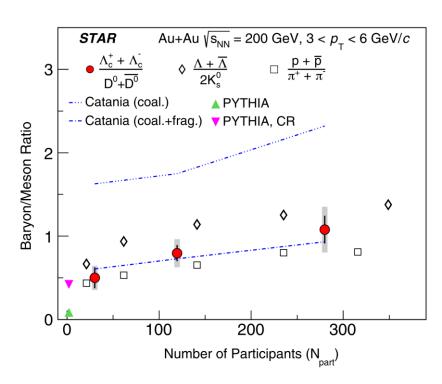

- As a parton propagates through medium (or vacuum) it radiates gluons which then fragment into quark-antiquark pairs
- Remaining quarks then hadronize

Coalescence

- Quarks propagating through medium hadronize with surrounding (anti-)quarks
 - Important at intermediate hadron p_T (2 < p_T < 8 GeV/c)
- More likely to enhance baryon (3 quarks) than meson (2 quarks) for given hadron $p_{\rm T}$ compared to vacuum case
 - Due to larger abundance of low p_T quarks in medium
- Known in light flavor and strange sector

• How about heavy-flavor hadrons?

 p/π (STAR): Phys. Rev. Lett. 97, 152301 (2006)


A. / DO YIELD RATIO ENHANCEMENT

Open-charm baryon/meson yield ratio

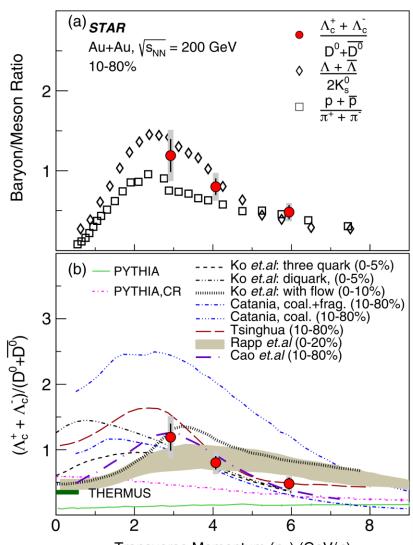
CENTRALITY DEPENDENCE

- Enhancement of the ratio increases towards central collisions
- Data well described by Catania model with coalescence and fragmentation

 $Λ_c$ (STAR): Phys. Rev. Lett. 124, 172301, (2020) p/π (STAR): Phys. Rev. Lett. 97, 152301 (2006) Λ/K (STAR): Phys. Rev. Lett. 108, 072301 (2012) Catania: Eur. Phys. J. C 78, 348, (2018)

A. / DO YIELD RATIO ENHANCEMENT

Open-charm baryon/meson yield ratio

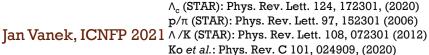

CENTRALITY DEPENDENCE

- Enhancement of the ratio increases towards central collisions
- Data well described by Catania model with coalescence and fragmentation

P_T DEPENDENCE

- Significant enhancement with respect to **PYTHIA** prediction
- Coalescence models closer to data

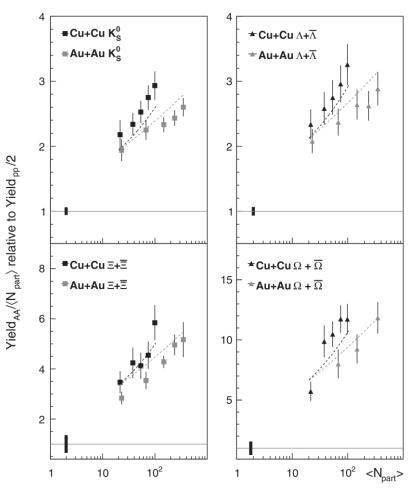
Importance of coalescence hadronization of charm quarks



Transverse Momentum (p_{\perp}) (GeV/c)

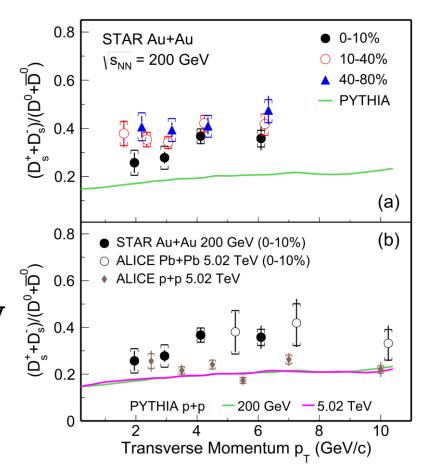
Catania: Eur. Phys. J. C 78, 348, (2018) Tsinghua: arXiv:1805.10858, (2018)

Rapp et al.: Phys. Rev. Lett. 124, 042301 (2020)


Cao et al.: arXiv:1911.00456, (2019)

STRANGENESS ENHANCEMENT

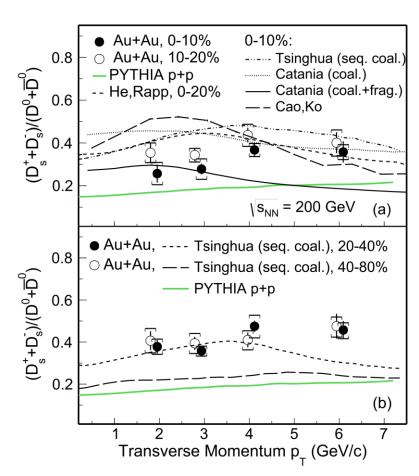
- Another very important phenomenon observed in heavy-ion collisions is strangeness enhancement
- Protons and neutrons do not contain any (valence) strange quarks
 - Need a mechanism of strangeness production
- Fragmentation of gluons
 - Present in both p+p and Au+Au
- Strange quark-antiquark pairs from QGP
 - This additional mechanism leads to enhanced strangeness production in Au+Au with respect to p+p for light hadrons
- How about strange heavy-flavor hadrons?


Strangeness enhancement (STAR): Phys. Rev. Lett. 108, 072301 (2012)

D_s/D⁰ YIELD RATIO ENHANCEMENT

- D_s/D^0 yield ratio as a function of p_T
- Enhancement of D_s/D⁰ ratio in Au+Au collisions with respect to:
 - PYTHIA baseline at 200 GeV
- Comparable to ALICE Pb+Pb at 5.02 TeV

STAR: arXiv:2101.11793


ALICE p+p: Eur. Phys. J. C 79, 388 (2019).

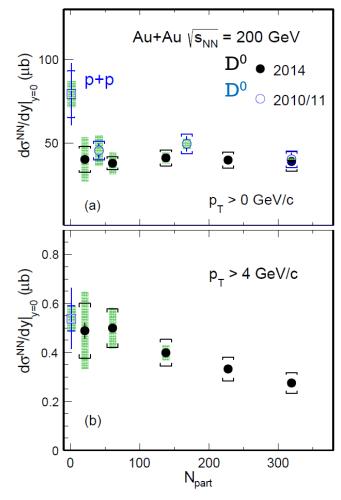
ALICE Pb+Pb: JHEP 10, 174 (2018).

D_s/D⁰ YIELD RATIO ENHANCEMENT

- D_s/D^0 yield ratio as a function of p_T
- Enhancement of D_s/D⁰ ratio in Au+Au collisions with respect to PYTHIA baseline
- Comparison to models:
 - Catania model with only coalescence describes data for $p_T > 4 \text{ GeV}/c$
 - Catania model with coalescence and fragmentation describes data for p_T < 3 GeV/c
 - Tsinghua model with sequential coalescence hadronization is closer to data overall
- Importance of coalescence hadronization of charm quarks

STAR: arXiv:2101.11793 Catania: Eur. Phys. J. C 78, 348, (2018). Tsinghua: arXiv1805.10858, (2018). He, Rapp, Phys. Rev. Lett. 124, 042301 (2020) Cao, Ko *et al.*: Phys. Lett. B 807, 135561 (2020).

TOTAL CHARM PRODUCTION CROSS SECTION


- Total charm production cross section per binary collision in Au+Au extracted from the measurements of open-charm hadrons
- The Au+Au result is consistent with that measured in p+p collisions within the uncertainties
- Redistribution of charm quarks among open

 charm hadron species in Au+Au compared
 to p+p

Coll. system	Hadron	${ m d}\sigma_{ m NN}/{ m d}y$ [${ m \mu b}$]
	\mathbf{D}_0	$41\pm1\pm5$
	\mathbf{D}^{\pm}	$18 \pm 1 \pm 3$
Au+Au at 200 GeV Centrality: 10-40%	D_s	$15\pm1\pm5$
Ochinality: 10-4070	$\Lambda_{\mathtt{c}}$	78 ± 13 ± 28 *
	Total:	152 ± 13 ± 29
p+p at 200 GeV	Total:	130 ± 30 ± 26

*The Λ_c cross section is derived using the Λ_c/D^0 yield ratio

D⁰ 2014 (STAR): Phys. Rev. C 99, 034908, (2019). D⁰ 2010/11 (STAR): Phys. Rev. Lett. 113, 142301 (2014), erratum: Phys. Rev. Lett. 121, 229901 (2018). p+p (STAR): Phys. Rev. D 86 072013, (2012)

CONCLUSIONS

- STAR has extensively studied production of open-charm hadrons in heavy-ion collisions utilizing the Heavy Flavor Tracker
- The charm quarks interact strongly with the QGP
 - D^0 and D^{\pm} mesons are significantly suppressed at high- $p_{\rm T}$ in central Au+Au collisions
- Coalescence likely plays an important role in hadronization of the charm quarks in A+A collisions
 - Λ_c/D^0 and D_s/D^0 yield ratios are enhanced in Au+Au collisions with respect to the p+p collisions
- Total charm production cross section per binary collision in Au+Au collisions is consistent with that measured in p+p collisions
 - Redistribution of charm quarks among open-charm hardon species

THANK YOU FOR ATTENTION