Light nuclei production in Au+Au collisions at BES-II energies using the STAR detector

3	Sibaram Behera
4	(for the STAR Collaboration)
5	Indian Institute of Science Education and Research (IISER) Tirupati, India

In heavy-ion collisions, the production mechanism of light (anti-)nuclei can be explained by either the thermal model or the coalescence model. By studying the yields and ratios of these nuclei, we can gain a better understanding of their production mechanisms and the properties of the expanding system during freeze-out. Additionally, it has been proposed that the enhancement of light nuclei compound ratios, e.g. $N_t N_p / N_d^2$ and $N_{4He} N_p / N_{3He} N_d$, from the coalescence baseline could serve as a probe for searching for critical phenomena in the QCD phase diagram.

In the first phase of the Beam Energy Scan (BES-I) program at RHIC, an enhancement relative to the coalescence baseline of the light nuclei yield ratio $(N_t N_p / N_d^2)$ was observed in the most central Au+Au collisions at $\sqrt{s_{NN}} = 19.6$ and 27 GeV, with a combined significance of 4.1σ . The precision of the new measurements will be significantly improved by the large data sets ($\sim 10 \times$ BES-I) obtained by the STAR BES-II with upgraded detector capabilities.

In this talk, we will present the centrality and energy dependence of transverse momentum (p_T) spectra of p, \bar{p} , d, \bar{d} , and ${}^{3}He$ in Au+Au collisions at BES-II energies of $\sqrt{s_{NN}} = 7.7 - 27$ GeV. We will also report on the centrality and energy dependence of integrated particle yields (dN/dy) and mean p_T $(\langle p_T \rangle)$ of light nuclei. Furthermore, we will discuss the centrality and p_T dependence of the coalescence parameters $(B_2(d) \text{ and } B_3({}^{3}He))$. The physics implications of these results will be discussed.