Highlights from the heavy-ion program in STAR

Petr Chaloupka

for the STAR collaboration

Czech Technical University in Prague

Outline

sQGP at top RHIC energy

 Recent heavy flavor results with new detectors

(parallel talk by M. Lomnitz)

- Beam Energy Scan (BES)
 - Onset of sQGP
 - Phase boundary and critical point
 - Chiral effects and global polarization

Beam Energy Scan - Phase II (BES)

STAR experiment

Heavy Flavor Tracker (HFT)

- Installed for year 2014
- First application of Monolithic Active Pixel Sensor technology in collider experiments.
- DCA resolution <50 μm for p_T =750 MeV/c Kaon

D_0 results from the HFT – R_{AA} , v_2

 $R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{dN/dy^{AuAu}}{dN/dy^{pp}}$

- Greatly enhanced D₀ significance w HFT
- Low p_T R_{AA}
 - for $p_T \sim 1.5 \text{ GeV/c}$ R_{AA} >1
 - Charm coalescence with a radially flowing bulk medium
- High p_T R_{AA}
 - significant suppression in central Au+Au collisions.
 - Similar suppression as for light partons
 - Suggests charm-medium interaction

D_0 results from the HFT – R_{AA} , v_2

 $R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{dN/dy^{AuAu}}{dN/dy^{pp}}$

- Greatly enhanced D₀ significance w HFT
 - Low $p_T R_{AA}$
 - for $p_T \sim 1.5 \text{ GeV/c}$ R_{AA} >1
 - Charm coalescence with a radially flowing bulk medium
- High p_T R_{AA}
 - significant suppression in central Au+Au collisions.
 - Similar suppression as for light partons
 - Suggests charm-medium interaction
- Non-zero v_2 for $p_T>2$ GeV/c
 - Favors charm quark diffusion
- Lower than light hadron v₂
 - charm quarks not fully thermalized?
- Better statistics and narrower centrality bins are needed

PRL 113 (2014) 142301 PRL 116(2016) 062301 PLB 655 (2007) 104

Comparison to models

Values for the diffusion coeff. extracted from models and compared to STAR data

	D x 2πT	Diff. Calculation	
TAMU	2-11	2-11 T-Matrix	
SUBATECH	2-4	pQDC+HTL	
Duke	7	Free parameter	

STAR D₀ 2010/11: PRL 113 (2014) 142301 Theory curves private communications DUKE: PRC 92 (2015) 024907 A.Andronic arXiv:1506.03981(2015)

Comparison to models

Values for the diffusion coeff. extracted from models and compared to STAR data

Models with charm diffusion coefficient of 2-11 describe STAR $D_0 \, R_{AA}$ and v_2 results.

Lattice calculations are consistent with these values inferred from data.

Quarkonia measurements with MTD

$J/\psi R_{AA}$ in Au+Au at 200 GeV

- First J/ψ results from the dimuon channel at midrapidity in Au+Au collisions at RHIC
- Full statistics from 2014
 Au+Au 200 GeV run
- Consistent with dielectron channel

 $\mathsf{Suppression} \text{ at } \mathsf{Iow-p_T}$

- Dissociation
- Regeneration
- Cold nuclear matter effect

 $High-p_{T}$

- Strong suppression in 0-20%
- Rising trend in 20-60%
 - Dissociation
 - Formation time effect; B feed down

$J/\psi R_{AA}$ – comparison to LHC and models

- $J/\psi R_{AA}$ for $p_T > 0$ GeV/c: RHIC is smaller than LHC -> more recombination at LHC
- $J/\psi R_{AA}$ for $p_T > 5$ GeV/c : LHC is smaller than RHIC -> stronger dissociation at LHC
- Transport models with dissociation and recombination qualitatively describe data

$\Upsilon(2S+3S)/\Upsilon(1S)$ ratio

Combined signal of Y(2S+3S) from the di-muon channel

- Challenging for di-electron channel due to Bremsstrahlung
- Less melting of Y(2S+3S) at RHIC than at LHC?

Beam Energy Scan

- Key physics questions:
- Where is the onset of sQGP formation
 - Can we "turn it on/off"?
- Where starts the 1st order phase transition
 - Is there a critical point?
- What are the symmetries (degree of freedom) of the sQGP
 - Chiral symmetry restoration
 - Quark and gluon degree of freedom
 - Response to external field

What is the Equation of State?

Mapping the QCD Phase Diagram

Search for onset of sQGP signatures

- R_{CP} exhibits suppression down to 39 GeV
- Cronin effects play a bigger role at lower energies.
- Yields per binary collision indicate a balance of enhancement and suppression effects at $\sqrt{s_{NN}} = 14.5$ GeV.

Search for onset of QGP formation

Triangular flow v₃ – is a sensitive indicator for the presence of a low viscosity QGP phase

Phys. Rev. Lett. 116 (2016) 112302

- Sizable v₃ at lower energies in central to midcentral centralities
- While the v₃ grows as ~log(√s) at higher energy, it is nearly independent of energy below 20 GeV.
- Peripheral collisions consistent with zero for $\sqrt{s_{NN}}$ less than 14.5 GeV

- ${\rm v}_{\rm 3}\,{\rm scaled}\,\,{\rm by}\,\,n_{\rm ch,PP}=\frac{2}{N_{\rm part}}dN_{\rm ch}/d\eta$
 - Local minima √s_{NN} = 7.7 20 GeV
 - Softening of EoS?

Search for 1st order phase transition: dv₁/dy

Directed flow v₁

- Sensitive to the pressure
- Sensitive to EoS
- Dip in dv_1/dy softening of EOS

- (Anti)-Lambdas follow those of (anti)protons
- Net-K and net-p are consistent with each other down to ~14.5 GeV
 - net-K stays negative for $\sqrt{s_{NN}} < 14.5 \text{ GeV}$

Subhash Singha SQM 2016

Search for 1st order phase transition: HBT

R. Lacey, PRL **114**, 142301 (April 2015) STAR, PRC92(2015)

- High precision azimuthally sensitive HBT
- Significant non-monotonic behavior of (R²_{out}-R²_{side})
 - (R²_{out}-R²_{side}) ~ emission duration
 - Peaking around 20 GeV increased emission duration, lower pressure?

Search for critical point

critical point

- susceptibilities and correlation length diverge
- large fluctuation

$$\chi_{q}^{(n)} = \frac{1}{VT^{3}} \times C_{n,q} = \frac{\partial^{n}(p/T^{4})}{\partial (\mu_{q})^{n}}, q = B, Q, S$$

Observables

- Higher moments of conserved quantum numbers
 (Q, S, B)
 - Direct link between theory and moments of distributions (cumulant ratios)

$$\begin{aligned} \frac{\chi_2^i}{\chi_1^i} &= (\sigma^2/M)^i = \frac{c_2^i}{c_1^i} \\ \frac{\chi_3^i}{\chi_2^i} &= (S\sigma)^i = \frac{c_3^i}{c_2^i} \end{aligned}$$

$$\frac{\chi_4^i}{\chi_2^i}=(\kappa\sigma^2)^i=\frac{c_4^i}{c_2^i}$$

i = B, Q, S

Experiment

Net-charge, kaon, proton fluctuations

- Non-monotonic behavior of net-proton κσ² seen in top 5% central collisions
 - Largest deviation from Poisson and uRQMD around 19.6 GeV
- Need more precise measurements below 20 GeV
 - Finer steps in μ_B
 - Increase accepted rapidity window

19

Search for chiral effects

D. Kharzeev, A. Zhitnitsky, NPA797:67-79(2007) D. Kharzeev, D. T. Son, PRL 106 (2011) 062301

Charge separation wrt. Event plane

STAR: PRL103, 251601 (2009), PRL113, 052302 (2014), ALICE: PRL110, 012301 (2013)

H and F are the CME and background

- CME signal (ΔH) drops to 0 from 19.6 to 7.7 GeV
 - Probable domination of hadronic interactions over partonic ones

Baryonic charge separation

Liwen Wen SQM 2016

- Significant baryonic charge separation signal is observed.
- The magnitude is larger than electric charge separation signal of h-h correlations. CVE predicts qualitatively the same order of hierarchy.
- Ongoing background studies to decouple B-field,
 v₂ and charge separation
 - Study impact of initial E-field independently (Cu+Au)
 - Collide nuclei with special configurations

 (238 U+ 238 U, 96 Ru+ 96 Ru, 96 Zr+ 96 Zr)
 Proposed isobar experimental program for 2018
 - Measuring the B-field and vorticity of the system

Global Λ polarization

- Large initial angular momentum
 |L| ~ 10⁵ ħ in non-central collisions
- Fluid vorticity may generate global polarization

- Using Lambdas
 - "self-analyzing" decay preferentially emitting daughter proton in spin direction
 - For AntiLambdas spin is opposite to anti-proton direction

Global Λ polarization

- First clear positive signal of global polarization in heavy ion collisions
- Both Lambdas and AntiLambdas show positive polarization
- Splitting
 - suggests additional magnetic effect
- Allows Model-dependent estimate of B-field and plasma vorticity

Acceptance integrated polarization:

Summary of results

First results from the HFT and MTD

- Successful data taking with MTD and HTT
- $D^0 R_{AA}$ and v_2 in Au+Au collisions:
 - favors models calculation with charm quark diffusion
 - Diffusion coefficient compatible with lattice calculations
- J/ ψ R_{AA} in Au+Au collisions: larger (smaller) R_{AA} at low (high) p_T than LHC
 - Effect of recombination
- Y in Au+Au collisions:
 - hint for less Y(2S+2S) suppression at RHIC than LHC
- More results to come from run 2016

Summary of results

Beam Energy Scan

- Spaning a range of μB that could contain features of the QCD phase diagram.
- Observed signatures consistent with disappearance of parton dominated regime
- Indicators pointing towards a softening of the equation of state which
 - possible evidence for a first order phase transition.
- Critical phenomena signal from higher moment fluctuations
 - Statistically demanding
- Observation of charge and baryon charge separation
 - Possible signal of chiral magnetic and vortical effects
- First results on global hyperon polarization

Near future

Beam Energy Scan II with fixed target program

Beam Energy Scan – phase II

2019-2010

- Zoom to the energy range of interest 5 to 20 GeV
 - Finer steps in μ_B
- Improve significance
 - Long runs
 - Higher luminosity (eCooling)
- Detector upgrades
- Extend Range -Fixed Target
 Program

Upgrades for BES II

iTPC Upgrade:

- Rebuilds the inner sectors of the TPC
- Continuous Coverage
- Improves dE/dx
- Extends η coverage from 1.0 to 1.5
- Lowers p_T cut-in from 125 MeV/c to 60 MeV/c

EndCap TOF Upgrade:

inner TPC upgrade

endcap TOF

- Rapidity coverage is critical
- PID at $\eta = 0.9$ to 1.5
- Improves the fixed target program
- Provided by CBM-FAIR

EPD Upgrade: • Improves trigger • Reduces background • Allows a better and independent reaction plane measurement critical to BES physics

Event Plane Detector

Fixed Target Program with STAR

- Extend energy reach down to 3GeV
- overlap/complementary AGS/FAIR/JPARC
- Upgrades (iTPC+eTOF+EPD) crucial
- Unprecedented coverage and PID for Critical Point search in BES-II
- Real collisions taken in run 2014

Thank you for your attention

Backup slides

Planned data taking runs

Year	System and Energy	Physics/Observables	Upgrade
2017	• p+p @ 500 GeV • Au+Au @ 62.4 GeV	Spin sign change diffractiveJets	FMS post-shower, EPD (1/8 th), eTOF prototype
2018	• Zr+Zr, Ru+Ru @ 200 GeV • Au+Au @ 27 GeV	CME, di-leptonsLambda polarization	Full EPD? eTOF prototype
2019	Au+Au @ 11-20 GeV + fixed target	QCD critical pointPhase transitionCME,	Full iTPC, eTOF, and EPD
2020	Au+Au @ 7-11 GeV + fixed target	QCD critical pointPhase transitionCME,	

D₀ triangular flow

Fluctuations in initial conditions – expectations of a finite $D_0\, v_3$

Theory: PRC 91(2015) 014904 & private comm.

- First measurement of D₀ v₃
- Large uncertainties
- Should improve.
 - Currently reprocessing year 2014 data discovered decoder issue in PXL
 - Run 16:
 - Full aluminum cables for inner layer of PXL
 - Factor 2 -3 further improvement for D₀ significance (a) 1 GeV -> centrality dependence for v₂

First D_s signal at RHIC

- D_s study of the mechanism of charm hadronization and QGP properties
- The R_{AA} of D_S is higher than D_S, but statistically not significant
- Hint of finite D_S v₂ at RHIC.
- Run 14+16 increased statistics

