Femtoscopy with unlike-sign kaons at the STAR experiment

Jindřich Lidrych for the STAR Collaboration

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

5th International Conference on New Frontiers in Physics

Kolymbari, Crete, Greece

 $6^{th} - 14^{th}$ July 2016

Femtoscopy

Femtoscopy with kaons – a cleaner probe

Femtoscopy with unlike-sign kaons

Femtoscopy

Kaon femtoscopy

STAR Experiment

Data sample

Raw CF

Corrections

Femtoscopy with narrow resonance

- Using strong final-state interaction via resonance
 - Predicted to be more sensitive to source spatial extent than measurement at low q_{inv}
 - Statistically advantageous

Challenge - extension of femtoscopic formalism to region of narrow resonance

K^+K^- correlations:

Coulomb and strong final state interaction

 $k^* = 126 \,{
m MeV}/c$, $\Gamma = 4.3 \,{
m MeV}$

 $\phi(1020)$ resonance

Fitting

Results

Model comparison

Conclusions

$K^+K^+ \otimes K^-K^-$ correlations:

First systematic study

- "standard femtoscopy" at low q_{inv}
- Extraction of source radii

ບັ°2.4

esonance

Pratt et al.: PRC 68 (2003) 054901

Lednicky: Phys.Part.Nucl. 40 (2009) 307-352

STAR Experiment at RHIC

6th – 14th July 2016

Jindřich Lidrych

Data sample & Kaon identification

TPC

TOF

 $CF(q_{inv}) = \frac{\text{real pairs (correlated)}}{\text{mixed pairs (uncorrelated)}}$

Data sample

BBC

Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$ taken in 2011

Kaon identification

- At midrapidity $|\eta| < 1$
- Using TPC and ToF information
- 0.15
- TPC: $|n\sigma_{kaon}| < 3$

Model comparison

Conclusions

Jindřich Lidrych

Raw correlation functions

Corrections

Femtoscopy

Kaon femtoscopy

STAR Experiment

Purity Correction

- Corrections for misidentification of kaons
- Due to excellent PID ability of STAR detector very high purity

Data sample

Raw CF

Corrections

Fitting

Results

Model comparison

Conclusions

 Correction for detector effect – limited single-particle momentum resolution in TPC

$$q_{ivn} + \delta q_{inv} = (p_1 + \delta p_1) - (p_2 + \delta p_2)$$

- Experimental CFs are smeared
- Parameters of momentum resolution were obtained from Monte-Carlo simulations
- Then, ideal and smeared theoretical CFs were calculated
- The correction factor $C(q_{inv}) = CF(q_{inv}^{ideal})/CF(q_{inv}^{smeared})$

STAR TPC resolution of kaon transverse

momentum from MC simulations

Fitting & Like-sign kaon CF

Femtoscopy

Kaon femtoscopy

- Used for extraction of kaon emission source size and λ parameter
- "standard" Bowler-Sinyukov method:

STAR Experiment

Data sample

Raw CF

Corrections

Fitting

Results

Model comparison

Conclusions

1D: $CF(q_{inv}) = \left[(1 - \lambda) + \lambda K(q_{inv}, R_{inv})(1 + e^{-R_{inv}^2 q_{inv}^2}) \right] \mathcal{N},$ **3D:** $CF(q_o, q_s, q_l) = \left[(1 - \lambda) + \lambda K(q_{inv}, R_{inv}) \left(1 + \exp(-q_o^2 R_o^2 - q_s^2 R_s^2 - q_l^2 R_l^2) \right) \right] \mathcal{N},$

- R_{inv}, R_o, R_s, R_l source radii
- λ parameter correlation strength
- $\mathcal{N}-$ normalization
- $K(q_{inv}, R_{inv})$ Coulomb function

Example of 1D fit: data(points) and the best fit(line)

Phys. Lett., B270:69–74, 1991

Results – extracted source size

• 3D: Only statistical error; systematic errors understudy

6th – 14th July 2016

Jindřich Lidrych

Comparison of 1D unlike-sign to theoretical model

Femtoscopy

Kaon femtoscopy

STAR Experiment

Data sample

Raw CF

Corrections

Fitting

Model comparison

Conclusions

- Extracted space-time extents from like-sign kaon femtoscopy are used for theoretical calculation of unlike-sign correlation function
- Gauss + Lednický model of final-state interaction
 - Includes $\phi(1020)$ resonance due to the FSI Lednicky: Phys.Part.Nucl. 40 (2009) 307-352

 $CF(p_1, p_2) = \int d^3 r S(r, k) |\psi_{1,2}(r, k)|^2$

- Gaussian parameterization of source size source size R_{inv} is extracted from fitting like-sign correlation function
- The theoretical function is transformed to an experimental one via: $CF^{exp} = (CF^{theo} - 1)\lambda + 1$

in order to compare to an experimental correlation function, which is corrected for impurities

THERMINATOR 2 + Lednický model of final-state interaction

Statistical production of particles + resonances decay

• THERMal heavy IoN generATOR 2

arXiv:1102.0273

3 0.6 0.4 STAR preliminary

0.5

λ

for theoretical calculation

 \mathbf{R}_{inv}

STAR preliminar

(tm)

6th - 14th July 2016

Blast-wave parameterization of the freeze-out configuration

k_T [GeV/c]

k_T [GeV/c]

Comparison of 1D unlike-sign to Lednický model

Comparison of 1D unlike-sign to Lednický model

Comparison of 1D unlike-sign to THERMINATOR 2

Conclusions

FemtoscopySystematic study of K^+K^- correlations in Au+Au collisions at 200 GeVKaon femtoscopy• Strong centrality dependence in $\phi(1020)$ regionSTAR ExperimentExtraction of space-time characteristic of source from $K^+K^+\&K^-K^-$ correlations
in Au+Au collisions at 200 GeV
• Purity and Momentum resolution correction are applied
• Extraction of source radii R_{inv} from 1D CF
• Extraction of source radii R_{out} , R_{side} and R_{long} from 3D CFCorrectionsComparison of K^+K^- correlation function to Lednický model

- The Lednický model reproduces overall structure of the observed correlation function
- In the peripheral collisions the model under predicts the strength of the correlation function in the region of resonance

Model comparison

Fitting

Results

Conclusions

The End

Femtoscopy	
Kaon femtoscopy	
STAR Experiment	
Data sample	
Raw CF	Th
Corrections	
Fitting	
Results	
Model comparison	
Conclusions	

Thank you for your attention