#### XIII International Conference on New Frontiers in Physics

26 Aug - 4 Sep 2024, OAC, Kolymbari, Crete, Greece

Office of

Science

## **STAR Spin Physics Highlight**

STAR

SHANDONG UNIVER

#### Ting Lin (林挺), for the STAR Collaboration Shandong University (山东大学)

Supported in part by



#### Outline

- Motivation
- RHIC Facility and STAR Detector
- Longitudinal Spin Structure
- Transverse Spin Structure
- Summary

#### Fundamental Questions Regarding Proton Spin





• How do quarks and gluons conspire to provide the proton's spin <sup>1</sup>/<sub>2</sub> ?

- What is the role of gluons and sea quarks?
- What is the size of the orbital angular momentum?
- What is the dynamic structure of the proton?
  - How do we go beyond longitudinal parton distribution functions to map out the 3D structure?
  - Can we visualize color interactions in QCD?



#### Relativistic Heavy Ion Collider (RHIC)



- Spin pattern changes from fill to fill with little depolarization;
- Siberian snakes preserve the polarization;
- Spin rotators select spin orientation;
- proton-Carbon (pC) polarimeters and hydrogen gas jet (H-Jet) measure the polarization.

### Solenoidal Tracker At RHIC (STAR)





## Longitudinal Spin Structure



#### Spin of the Proton



 $f_g(x,Q^2)$   $f_q(x,Q^2)$   $f_q(x,Q^2)$ 

• For helicity distributions (collinear terms) in 'canonical' approach, the proton's spin can be decomposed into:

$$\left\langle S_{z}^{p}\right\rangle =\frac{1}{2}=\frac{1}{2}\Delta\Sigma+\Delta G+\left\langle L_{z}^{q}\right\rangle +\left\langle L_{z}^{g}\right\rangle$$

R. L. Jaffe and A. Manohar, NPB 337, 509 (1990)

• 
$$\Delta \Sigma = \int (\Delta u + \Delta d + \Delta s + \Delta \bar{u} + \Delta \bar{d} + \Delta \bar{s}) dx$$

•  $\Delta G = \int \Delta g(x) dx$ 

 $d\sigma_{pp \rightarrow jet+X} = \sum_{ab} \int f_a(x_1, Q^2) f_b(x_2, Q^2) d\hat{\sigma}_{a+b \rightarrow jet+X}(x_1, x_2, Q^2) dx_1 dx_2$ 

• Helicity PDF,  $\Delta f(x) =$ 



• Unpolarized PDF, f(x) =



#### Probing the Gluon Helicity at RHIC



- Consistent with 2009 data, which provided first evidence for positive  $\Delta G$  for x > 0.05;
- Improved statistical and systematics uncertainties;
- Will significantly reduce uncertainty on gluon polarization once included in global fits.



• For most RHIC kinematics, gg and qg dominate, making  $A_{LL}$ 

for jets sensitive to gluon polarization.





 Dijet captures more information from the hard scattering and provide a more direct link to the initial kinematics than inclusive probes.
ICNEP 2024





Ting Lin - Shandong University

#### Impact of the New STAR Results







## **3D Tomography of the Nucleon:**

#### TMD



#### **TMD** Parton Distribution Functions





- Image the transverse and longitudinal (2+1d) structure of the nucleon and nuclei;
  - Tomography of the nucleon;
- Access to transverse momenta at non-perturbative scales;
  - Probe at the confinement scale;
- Exhibit correlations arising from spin-orbit effects.

#### Transverse Single-Spin Asymmetry

$$p^{\uparrow} + p \rightarrow \text{Jet} + \pi^{\pm} + X$$



• Each TMD PDF is convoluted with a fragmentation function and appears with a independent harmonic modulations (azimuthal asymmetry amplitudes).

 $A_N$  for  $Z^0$  and  $W^{\pm}$  Boson Production



• Test the nonuniversality nature of Sivers function:

Sivers<sub>SIDIS</sub> = -Sivers(Drell - Yan or W/Z)

• A fundamental prediction from the gauge invariance of QCD.





**ICNFP 2024** 

Ting Lin - Shandong University



# Comparison with pp 510 GeV



- The asymmetries agree at  $0.06 < x_T < 0.2$ ,  $Q^2$  differ by a factor of 6;
- Collins asymmetry has a weak energy dependence in hadronic collisions;
- z and  $j_T$  dependences of the Collins FF are closely related.



 $A_N$  for  $K^{\pm}$  and Proton in Jets

STAR, PRD 106, 072010 (2022)



- $K^+$ , with contribution from favored fragmentation of u quarks, has similar magnitude of asymmetries to  $\pi^+$ ;
- $K^-$ , which is produced by unfavored fragmentation, has asymmetries that are consistent with zero;
- Proton and anti-proton's asymmetries are all consistent with zero at one sigma level.

#### $A_N$ for Di-hadron Measurement



• Spin dependent di-hadron correlations probe collinear quark transversity coupled to the interference

#### fragmentation function;

• Theoretical expectations from fits to existing SIDIS and  $e^+e^-$  data, assuming the universality hold.

#### Outlook

**ICNFP 2024** 







- Large p+p 508 GeV sample from 2022 under analyses;
- Large p+p 200 GeV data taking ongoing now.

Ting Lin - Shandong University





- Significant progress towards understanding the internal spin structure of nucleon at STAR:
  - Confirm the previous finding of positive gluon polarization inside proton;
  - New insights into the transversity, Sivers and Collins effect in pp collisions;
- RHIC will conclude the polarized pp collisions this year:
  - Longitudinal spin program has few remaining results to be published soon;
  - Unique transverse spin physics program with recent upgrades is ongoing.