Investigating the CME in isobaric $\binom{96}{44}Ru + \binom{96}{44}Ru$ and $\binom{96}{40}Zr + \binom{96}{40}Zr$ collisions at $\sqrt{s_{\rm NN}} = 200$ GeV using Sliding Dumbbell Method with the STAR detector at RHIC

Jagbir Singh

(for the STAR Collaboration) Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile email: jagbir@rcf.rhic.bnl.gov

Abstract

The chiral imbalance, coupled with the presence of a strong magnetic ² field produced during heavy-ion collisions, results in charge separation along ³ the magnetic field axis, a phenomenon known as the Chiral Magnetic Effect (CME). A novel technique, the Sliding Dumbbell Method (SDM) [1, 2] has 4 ⁵ been developed to investigate the CME with the RHIC's isobar program. ⁶ The SDM facilitates the selection of events corresponding to various charge ⁷ separations (f_{DbCS}) across the dumbbell. A partitioning of the charge sep-⁸ aration distributions for each collision centrality into ten percentile bins is ⁹ done in order to find potential CME-like events corresponding to the high-¹⁰ est charge separation across the dumbbell. The study reports the results on ¹¹ CME sensitive γ -correlator ($\gamma = \langle \cos(\phi_a + \phi_b - 2\Psi_{RP}) \rangle$) and δ -correlator $_{12}$ $(\delta = \langle \cos(\phi_a - \phi_b) \rangle)$ for each bin of f_{DbCS} in each collision centrality for iso-¹³ baric collisions (Ru+Ru and Zr+Zr) at $\sqrt{s_{\rm NN}} = 200$ GeV measured with the ¹⁴ STAR detector. Furthermore, the background scaled ratio $(\Delta \gamma_{Ru/Zr} / \Delta \gamma_{Bkq})$ ¹⁵ will be presented to check for the expected enhancement of the CME in ¹⁶ Ru+Ru collisions as compared to Zr+Zr collisions. Overall, this research ¹⁷ aims to understand and detect the CME through an innovative experimental 18 method.

¹⁹ References

- [1] J. Singh, A. Attri, and M. M. Aggarwal, Proceedings of the DAE Symp.
 on Nucl. Phys. 64, 830 (2019).
- [2] J. Singh (for STAR Collaboration), Springer Proc. Phys. 304, 464
 (2024).