

Jet Measurements at STAR

Jan Rusňák for the STAR Collaboration

Nuclear Physics Institute ASCR

Outline

Jets in p+p: test of pQCD baseline for Au+Au measurements

Jets in Au+Au:

access to medium properties

- Inclusive Charged Jets
- Semi-inclusive Recoil Charged Jets
- Di-jet Asymmetry A_J

Motivation for Jet Studies

Jets: collimated sprays of hadrons created by fragmentation and hadronization of hard-scattered partons

Elementary collisions: fundamental test of pQCD Heavy-ion collisions: probe of hot and dense nuclear matter

Di-hadron Measurements: Proxy to Jets

intermediate trigger momentum:

Central Au+Au collisions: suppression of away side jet - "jet quenching" d+Au: no suppression -> medium effect

Better understanding of jet quenching => full jet reconstruction

π

assoc)

(assoc)

٨

p_⊤(assoc)

high trigger momentum:

π

0

Central Au+Au: away-side "jet" suppression of the order of charged hadrons suppression

 $\Delta \phi$ (rad)^{π}

STAR Experiment

Relativistic Heavy Ion Collider (RHIC)

Unique machine:

polarized p+p collisions, wide range of species, $\sqrt{s_{_{\rm NN}}}$ from 5.5 to 510 GeV, asymmetric collision..

Time Projection Chamber

Barrel ElectroMagnetic Calorimeter

Inclusive jets, hadron+jet:

- TPC tracks only
- Run 11 Au+Au √s_{NN}=200GeV

Di-jet asymmetry A₁:

- TPC tracks + BEMC towers
- Run 7 Au+Au √s_{NN}=200GeV

full azimuthal coverage pseudo-rapidity coverage: -1<n<1 TPC: low-momentum tracking (0.1 GeV/c)

Solenoidal Tracker at RHIC (STAR)

Inclusive Full Jets in p+p Collisions

First measurement (2006):

- midpoint-cone algorithm
- good agreement with pQCD

new measurement using high statistics Run9 data on the way

Jet Reconstruction in Heavy Ion Collisions

- extremely challenging task due to high multiplicity environment with large and fluctuating background
- discrimination between hard jets and "combinatorial" fake jets: not strictly possible on event-by-event basis
- jet quenching over a wide kinematic region can only be studied on an ensemble-averaged basis

Jet Reconstruction Algorithms

- infrared and collinear safe reconstruction algorithms (FASTJET [Cacciari, Salam, Soyez : Eur.Phys. J. **C72** (2012) 1896])
- clustering algorithms:
 - k_{τ} starts clustering from low- p_{τ} particles; irregular jet shapes
 - anti- k_{T} starts clustering from high- p_{T} particles; cone-like jet shapes

key steps:

- jet reconstruction: different resolution parameters R
- correction for background energy

density
$$\rho = med\left\{\frac{p_{T,i}}{A_i}\right\}$$
 A_i ...jet area

$$p_{T,corr} = p_T - A_{jet} \times \rho$$

arXiv:0906.1598

Full jet reconstruction in Au+Au collisions at STAR

• STAR: first experiment to perform full jet reconstruction in HI collisions

Nucl.Phys.A830:255c-258c,2009

- Run 7 data
- Baseline: Run 6 *p+p* data
- *R*_{AA} inconclusive: large systematic uncertainties

Higher statistics recorded, new techniques developed since then

Inclusive Jet Measurement

- combinatorial background reduced by a cut on leading hadron $p_{_{\rm T}}$ [G. de Barros et al, Nucl. Phys. A910:314-318, 2013]
- induces bias (however jet can still contain many soft constituents)

Inclusive Charged Jet Spectra

- Measured spectra corrected via Bayesian unfolding
- Jet energy scale resolution: roughly 5% (mainly due to track. eff. uncertainty)
- R_{AA} : Work in progress: further systematic uncertainties, pp baseline improvement $\frac{11}{11}$

Inclusive Charged Jet Spectra

- Measured spectra corrected via Bayesian unfolding
- Jet energy scale resolution: roughly 5% (mainly due to track. eff. uncertainty)
- R_{AA} : Work in progress: further systematic uncertainties, pp baseline improvement 12

Semi-inclusive Recoil Jets

Semi-inclusive Recoil Jets

Analysis in STAR:

- Recoil jet azimuth: $|\Delta \phi \pi| < \pi/4$
- No rejection of jet candidates on jet-by-jet basis
- Jet measurement is collinear-safe with low infrared cutoff (0.2 GeV/c)
- BKG subtraction: Mixed event technique

ALICE:

• BKG subtraction: two different trigger pT ranges

Background Estimation: Mixed Events

Ev. 2

Semi-incl. Recoil Jets: Same Event and Mixed Event

Signal = (SE-ME) distribution

Semi-inclusive Recoil Jets: Signal (SE-ME)

R=0.3, p_{T}^{trig} >9 GeV/c

• PYTHIA smeared by simulation of detector effects and BKG fluctuations

• Central collisions show strong suppression with respect to peripheral

Jet Imbalance A, Measurements

(1/N) dN/dA

0.2

0.4

$$A_{J} = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}$$

- di-jet momentum asymmetry
- signal of medium-induced jet modification

10-20%

• Pb+Pb Data

HIJING+PYTHIA

0.8

Op+p Data

0.6

Phys. Rev. Lett. 105 252303

A_1 Calculation in STAR

p_T^{Lead}>20 GeV/c p_T^{SubLead}>10 GeV/c $\Delta \Phi_{\text{Lead,SubLead}} > 2/3 \pi$ p_{T,cut}>2 GeV/c p_T [GeV/c] 9 8 7 6 5 4 3 2 1 b.8_{0.6}0.4_{0.2} -0.-0.4 -0.6_{0.8} -1 0 5 4 3 2 Ø.

> Calculate A_J with constituent HIGH *p*_{T,cut}>2 GeV/c

$$A_{J} = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}, \quad p_{T} = p_{T}^{rec} - \rho \times A$$

A_1 Calculation in STAR

Calculate A_J with constituent HIGH *p*_{T,cut}>2 GeV/c

$$A_{J} = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}, \quad p_{T} = p_{T}^{rec} - \rho \times A$$

A_1 Calculation in STAR

$$A_{J} = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}, \quad p_{T} = p_{T}^{rec} - \rho \times A$$

A₁: R=0.2

R=0.2: Matched Au+Au \neq matched p+p

A₁: R=0.4

Anti-kT R=0.4, pT,1>20 GeV & pT,2>10 GeV with pT^{cut}>2 GeV/c

=>Energy recovered for R=0.4 with low p_{τ} particles

Summary

- Inclusive charged jet spectrum extracted
- Semi-inclusive recoil charged jets:
 - Background estimated with the new mixed event technique
 - Suppression in HI collisions with respect to PYTHIA for *R*=0.3 jets
- Di-jet asymmetry A_j:
 - no significant difference between Au+Au and p+p

for low p_{T} constituent cut for R=0.4

OUTLOOK:

utilize Run 14 statistics + BEMC

BACKUP

Heavy Ion Jet Reconstruction

- take all jets in acceptance
- Jet candidates: reconstructed using anti-kT algorithm
- jet area A: Fastjet definition
- bckd. energy density calculated event-wise (*kT*): (hard jets not discarded for the calculation)
- $\rho = med\left\{\frac{p_{T,i}}{A_i}\right\}$

 $p_{T,corr} = p_T - A_{jet} \times \rho$

• distribution corrected for bckd. energy density:

we don't discard them (for now)

contain crucial information about background

Influence of bckg fluctuations: δp_{-} Distribution

Effect of background on jet finding:

• embedding of a known jet into an event -> jet reconstruction -> δp_{τ}

$$\delta p_T = p_{T,corr} - p_{T,emb} = p_T - A_{jet} \times \rho - p_{T,emb}$$

• ensemble-averaged δpT distribution -> measurement of the response matrix

Unfolding of Measured Spectra

- Undo the effects of smearing on hard jet spectrum
- In order to compare measured data directly with theory
- Correction for BG fluctuations
- Correction for detector effects

- "Inversion" of response matrix => unfolding matrix
- We use iterative method based on Bayes' theorem [G. D'Agostini, arXiv:1010.0632]
- Singular Value Decomposition (SVD) unfolding used to validate Bayesian for background fluctuations. Full unfolding with SVD in progress [Nucl.Inst.Meth.A372:469-481,1996]

.:: Unfolding Based on Bayes' Theorem::.

- first attempt we use an iterative procedure based on Bayes' theorem
- it relates the conditional probability for a Cause to generate given Effect $P(C_i|E_j)$ to its inverse $P(E_j|C_i)$

$$P(C_{i}|E_{j}) = \frac{P(E_{j}|C_{i}) \cdot P_{0}(C_{i})}{\sum_{l=1}^{n_{c}} P(E_{j}|C_{l}) \cdot P_{0}(C_{l})}$$

the Effect distribution can be then "unfolded" to the cause distribution:

$$n(C_i) = \frac{P(E_j|C_i) \cdot P_0(C_i)}{\sum_{l=1}^{n_c} P(E_j|C_l) \cdot P_0(C_l)} \cdot n(E_j)$$

next iteration: $n(C_i) \Rightarrow P_0(C_i)$

Including Detector Effects

Detector effects: paremetrized tracking efficiency