

The Elliptic Flow of Multi-strange Hadrons in $\sqrt{s_{NN}} = 200$ GeV Au + Au Collisions at STAR

ShuSu Shi for the STAR collaboration

HuaZhong Normal University

Introduction

Analysis Method

Results and Discussions

- > Centrality dependence of v_2
- Partonic collectivity
- \succ v₂ of ϕ and protons at low p_T

Summary

STAR Detectors

Particle Identification

- Reconstructed by decay topology
- Clear signal for multi-strange hadrons
 - $\blacktriangleright \quad \phi : Breit-Wigner + linear fit$
 - after combinatorial background subtraction by event mixing
 - \succ Ξ, Ω : Gaussian + 4th order polynomial fit
 - For clarity, ϕ , Ξ and Ω are scaled by 1/65000, 1/110000 and 1/4500, respectively

Centrality Dependence

Partonic Collectivity

Number of Quark scaling works up to p_T/n_q ~ 1.5 GeV/c Collectivity developed at partonic stage!

Mass Ordering for ϕ Mesons

Low p_T v₂ of ϕ Mesons

Summary

- STAR measured multi-strange hadrons v₂ up to Ω Large acceptance!
- > Multi-strange hadrons v_2 of ϕ , Ξ and Ω v_2 increases from central to peripheral collisions
- Number of quark scaling Partonic collectivity!
- > Mass ϕ > mass p, $v_2(\phi) \approx v_2(p)$ at $p_T < 1$ GeV/c More data are needed for studying ϕv_2 at low p_T