Direct-photon+hadron correlations for the study of parton energy loss at the top RHIC energy

Nihar Ranjan Sahoo (For the STAR Collaboration) Texas A&M University

ICPAQGP, Kolkata, India 2nd – 6th Feb, 2015

- Motivation: Direct Photon-hadron correlation
- STAR detector system: Advantage and data
- Direct-photons/ π^0 discrimination: *Transverse shower profile*
- **Results:** *Fragmentation functions and Nuclear modification factor*
- Summary

Motivation: Direct Photon-hadrons correlation

- Transverse energy of Y_{dir} approximates that of initial parton p_T in Y_{dir} -jet events
- High-p_T suppression at away-side Y_{dir}-jet events can give information about dense medium created in high energy heavy-ion collisions

PRL 103, 032302 (2009),PRL 77, 231 (1996), PRL 98, 212301 (2007), PRC 80, 054909 (2009), etc.

- Initial energy loss of away side parton (Frag. into Jet) in medium depends on
 - Initial energy, Path length and/or Color factor, coupling strength, etc.
- Y_{dir} -hadron correlation for the estimation of medium effect by,

Nuclear modification factor:

 $I_{AA} = \frac{D(z_T)_{AA}}{D(z_T)_{pp}}$ (Away-side FF of Au+Au collisions) (Away-side FF of p+p collisions)

Nuclear modification factor: I_{AA} of Υ_{dir} -jet

 Tangential and surface emission affect single and di-hadron spectra for the study of nuclear modification factor
 Zhang et al., PRL 98, 212301 (2007)

NLO pQCD calculation:

PRL 103, 032302 (2009)

- The Y-triggered hadron spectra at
 - Small z_T dominated by volume emission
 - Large z_T dominated by surface emission

$$z_T = \frac{p_T^{assoc}}{p_T^{trig}}$$

- Υ_{dir} trigger of away-side jet can give approximate initial p_T of parton
 Initial energy:
 - Υ_{dir}-h[±] correlation at different p_T^{trig}
 - •Path length or Color factor :
 - Υ_{dir}-h[±] and π⁰-h[±] correlation

Published STAR experiment results: I_{AA} of Υ_{dir} -jet

- The dependence of I_{AA} (γ^{dir} -h[±]) on p^{trig} shows no significant dependence on the initial parton energy within kinematic region 0.4 < z_T < 0.9
- I_{AA} of γ^{dir} -h[±] shows no z_T dependence within 0.3 < z_T < 0.9
- Hence, investigation on the behavior of nuclear modification factor at low z_T
- To achieve this region we use,
 triggered by high p_T Y^{dir} and π⁰: 12 < p_T^{trig} < 20 GeV/c
 low p_T associated hadron: 1.2 < p_T^{assoc} (GeV/c)

STAR detector system: Advantage and data sets

- Barrel ElectroMagnetic Calorimeter (BEMC) is used to identify EM clusters
- Time Projection Chamber (TPC) is used for identifying charged hadron tracks
- AuAu 200 GeV (Year 2011)
- pp 200 GeV (Year 2009)
- STAR detector system gives unique opportunity, full 2π -azimuth and wide $|\eta| < 1.0$, both for BEMC and TPC
- Triggered on high energy tower in the BEMC
- Important part of this analysis :- *Discrimination between* π^0 and Υ_{dir}
 - By Transverse Shower Profile (TSP) method
 - Using Barrel shower Maximum detector (BSMD)

- BEMC:- The energy deposition of EM cluster
- BSMD:- The η and φ positions of EM cluster
- Correlation between triggered EM neutral clusters and Charged hadron tracks from TPC
- Trigger tower with tracks, having p > 3 GeV/c, pointing to it is rejected
- Crucial part of this analysis
 - Υ/π^0 discrimination and
 - $_{2/4/15}$ Y_{dir} yield extraction

Nihar Ranjan Sahoo, ICPAQGP-2015

Correlation function: π^{0}_{rich} and Υ_{rich}

- Raw correlation functions for $\pi^{0}_{rich}~$ and Υ_{rich} triggered associated hadrons in $|\eta|<1.0$

- Uncorrelated background is then subtracted and $\Delta\varphi$ acceptance is corrected using the mixed events (modulated with elliptic flow for AuAu collisions)

Extraction of associated Yields: Of Υ_{dir} and π^{0} trigger

- Near-side and away-side yields are extracted within $|\Delta \phi| \le 1.3$ and $|\Delta \phi \pi| \le 1.3$
- Extracted raw yields are corrected for charge particle reconstruction efficiency
- Extraction of $\Upsilon_{\text{dir}}\,$ associated yields: Assuming near side $\Upsilon_{\text{dir}}\,$ associated hadron yield is zero,

$$Y_{\gamma_{dir}+h} = \frac{Y_{\gamma_{rich}+h}^a - RY_{\pi^0+h}^a}{1-R}$$
$$R = \frac{Y_{\gamma_{rich}+h}^n}{Y_{\pi^0+h}^n} \quad \text{and} \quad 1-R = \frac{N^{\gamma_{dir}}}{N^{\gamma_{rich}}}$$

 $Y^{a(n)}_{\gamma_{rich+h}}$: away-side (near-side) yields of associated particles per Y_{rich} trigger $Y^{a(n)}_{\pi^0+h}$: away-side (near-side) yields of associated particles per π^0 trigger

•The values of (1- \Re) are found to be ~40% and ~70% for pp and AuAu central (0-10%) collisions, respectively

Yields associated with π^0 - trigger

• Associated hadron yields with π^0 per number of trigger as a function of z_T within $|\eta| < 1.0$

 AuAu central (0-10%) collisions compare with pp collisions at 200 GeV colliding energy

 Away-side yields show suppression in AuAu collisions as compared with pp collisions

 Near-side shows no significant suppression

2/4/15

Nihar Ranjan Sahoo, ICPAQGP-2015

11

Fragmentation function: triggered Y_{dir} - hadrons

• Associated hadron yields with Υ_{dir} per number of trigger as a function of z_T within $|\eta| < 1.0$

- AuAu central (0-10%) collisions compare with pp at 200 GeV colliding energy
- Away-side yields shows suppression in AuAu collisions as compared with pp

- Changing $\Delta \varphi$ integration window doesn't change I_{AA} results significantly, mainly at high z_T
- Lower associated p_T range (1.2 < p_T GeV/c) provides lower-z_T reach

Nuclear modification factor: I_{AA} of Y_{dir} and π^0

- $I_{AA}^{\pi 0-h}$ and $I_{AA}^{Y dir-h}$ show similar and strong suppression
- At low z_T, data suggests lost energy may start to be recovered (with large uncertainty)

Summary

- Parton energy loss, due to hot and dense medium creation, can be studied by using Y_{dir}-hadron correlation
- Y_{dir}-triggers give access to initial parton energy for the study of parton energy loss
- A transverse shower profile technique is used for the Υ/π^0 discrimination
- I_{AA}^{π0-h} and I_{AA}^{Υdir-h} show similar and strong suppression
- At low z_T, data suggests lost energy may start to be recovered (with large uncertainty)

Back Up

Fragmentation function: *triggered* π⁰ - *hadrons*

 $12 < p_T^{trig} < 24$ GeV/c, and $3 < p_T^{assoc} < 24$ GeV/c Yields extracted within |Δφ − π| ≤ 0.63

QM2014

Fragmentation function: *triggered Y*_{dir} - *hadrons*

12 < p_T^{trig} < 24 GeV/c, and 3 < p_T^{assoc} <24 GeV/c Yields extracted within |Δφ – π| ≤ 0.63

Dependence of yields on integration window

Fragmentation function as a function of $\Delta \phi$ width at 0.1 < z_T < 0.2

