

7-10 February 2023, Puri, Odisha, India Variable Energy Cyclotron Centre, Kolkata, India

Chiral Magnetic Effect in isobaric $\binom{96}{44}Ru + \binom{96}{44}Ru$ and $\binom{96}{40}Zr + \binom{96}{40}Zr$) collisions at $\sqrt{s_{NN}} = 200$ GeV using **Sliding Dumbbell Method at RHIC**

Jagbir Singh (for the STAR Collaboration)

Department of Physics, Panjab University, Chandigarh, India

email: jagbir@rcf.rhic.bnl.gov

Supported in part by

The STAR Collaboration <u>https://drupal.star.bnl.gov/STAR/presentations</u>

Outline

- Introduction
- STAR Experiment
- Analysis Details
- Results
- Summary

Introduction

Chiral Magnetic Effect?

• Strong magnetic field created by the fast-moving spectator protons causes the charge separation perpendicular to the reaction plane, known as the CME [1].

B. Abelev et al., (ALICE Collaboration), Phys. Rev. Lett. 110, 012301 (2013).

- The STAR at RHIC and the ALICE at the LHC have studied the CME by measuring the γ -correlator ($\gamma = \langle cos(\phi_a + \phi_b 2\Psi_{RP}) \rangle$) [2].
 - [1] K. Fukushima, D. E. Kharzeev and H. J. Warringa, Phys. Rev. D 78, 074033 (2008).
 - [2] S. Voloshin, Phys. Rev. C 70, 057901 (2004).

07/02/2023

Introduction

Isobar Collisions

- The magnetic field is ~10-18% larger in Ru+Ru collisions
- Expect enhanced CME effect in Ru+Ru collisions than Zr+Zr collisions.

P. Tribedy, Free meson seminar, TIFR, Oct 7th, 2021

STAR Experiment

Two main detectors used in STAR for particle identification:

- Time Projection Chamber (TPC)
- Time of Flight (TOF)

The main characteristics of the STAR:

- Large coverage i.e., $\phi(0, 2\pi)$ and $\eta(-1, 1)$
- Excellent particle identification at low p_T using TPC and at intermediate p_T using TOF

Data Set: Isobaric collisions (Ru+Ru & Zr+Zr) at 200 GeV (~1.7B each). Event and track selection cuts:

- $-35 < V_z < 25 \text{ cm}$
- $|\eta| < 1$
- $0.2 < p_t < 2.0 \ GeV/c$
- DCA < 3 cm

STAR (Solenoidal Tracker at RHIC)

Analysis Details Sliding Dumbbell Method

• The azimuthal plane in each event is scanned by sliding the dumbbell of $\Delta \phi = 90^{\circ}$ in steps of $\delta \phi = 1^{\circ}$ while calculating, Db_{+-} for each region to obtain maximum values of Db_{+-} (Db_{+-}^{max}) in each event with a condition that $Db_{asy} < 0.25$.

$$Db_{+-} = \frac{n_{+}^{a}}{(n_{+}^{a} + n_{-}^{a})} + \frac{n_{-}^{b}}{(n_{+}^{b} + n_{-}^{b})}$$

 n_{+}^{a} and n_{-}^{a} (n_{+}^{b} and n_{-}^{b}), the number of positive and negative charged particles on the "a" ("b") side of the dumbbell.

• Db_{asy} can be defined as: $Db_{asy} = \frac{(N_+^{ex} - N_-^{ex})}{(N_+^{ex} + N_-^{ex})}$

 N_{+}^{ex} (= $n_{+}^{a} - n_{-}^{a}$) is positive charge excess and N_{-}^{ex} (= $n_{-}^{b} - n_{+}^{b}$) is negative charge excess.

- Fractional Charge separation (f_{DbCS}) across the dumbbell with $Db_{asy} < 0.25$ in each event is defined as : $f_{DbCS} = Db_{+-}^{max} - 1$
- *f_{DbCS}* distributions are obtained for different collision centralities and divided into 10-percentile bins. Jagbir Singh, Anjali Attri, and Madan M. Aggarwal, DAE Symp. Nucl. Phys. 64, 830, (2019).
 07/02/2023 ICPAQGP-2023, Jagbir Singh

Background Estimation

- Charge Shuffle (ChS): The charges of particles in each event are shuffled randomly to destroy the charge-dependent correlations amongst charged particles but keeping θ and ϕ of each particle unchanged in an event.
- Correlated (Corr.) Background: The shuffling of charges of particles in an event keeping the flow in, kills not only the CME-like correlations but also correlations amongst produced particles in an event. Correlations amongst particles that were destroyed during charge shuffling were recovered from the corresponding original events in a particular f_{DbCS} bin. This is termed as the correlated background.

f_{DbCS} distributions for Ru+Ru and Zr+Zr collisions

• Charge separation (f_{DbCS}) distributions extend towards higher f_{DbCS} values with decreasing collision centrality.

• There seems to be no correlation between f_{DbCS} of the charge shuffled event and the f_{DbCS} of the real event.

ICPAQGP-2023, Jagbir Singh

STAR

γ and δ correlators' dependences on centrality and f_{DbCS}

07/02/2023

ICPAQGP-2023, Jagbir Singh

10

0

In- and Out-of-plane correlations for different charge combinations

07/02/2023

ICPAQGP-2023, Jagbir Singh

50

40

30

Centrality (%)

20

10

11

$\Delta \gamma$ dependence on centrality and f_{DbCS}

- $\Delta \gamma$ (= $\gamma_{OS} \gamma_{SS}$) is positive for the top 20% (30%) f_{DbCS} bins for 0-40% (40-60%) centralities.
- $\Delta \gamma$ is smaller for Ru+Ru than those of Zr+Zr collisions.

Comparison of $\Delta \gamma$ with respective backgrounds for each f_{DbCS} bin

• The data points for the top 20% f_{DbCS} bins look higher than the total background (ChS+Corr) for the 20-50% collision centralities.

ICPAQGP-2023, Jagbir Singh

STAR

Double ratio for the top 0-20% f_{DbCS}

• The double ratio is calculated as:

• $\Delta \gamma_{data} / \Delta \gamma_{Bkg_{Ru+Ru}}$ seem to agree within errors those of $\Delta \gamma_{data} / \Delta \gamma_{Bkg_{Zr+Zr}}$ for the top 20% f_{DbCS} .

• The double ratio is 1.007±0.003 (pol0 Fit) for 0-60% centralities.

Summary

- The charge separation (f_{DbCS}) distribution extends towards higher f_{DbCS} values with decreasing collision centrality. There seems to be no correlation between f_{DbCS}^{ChS} and the f_{DbCS}^{data} .
- It is seen that $\gamma_{OS} > 0$ and $\gamma_{SS} < 0$ for the top 20% (30%) f_{DbCS} bins for 0-40% (40-60%) centralities. For 2-particle correlation, $\delta_{SS} > 0$ and $\delta_{OS} < 0$ in top f_{DbCS} bins (0-20%).
- Stronger correlations are seen in out-of-plane for both same-sign and opposite-sign charge pairs due to out-of-plane charge separation for top f_{DbCS} bins.
- It can be seen that $\Delta \gamma$ are smaller for Ru than those of Zr for the top 10% (top 20%) f_{DbCS} bins for 20-40% (40-60%) centralities.
- We do not observe any enhancement in the background scaled $\Delta \gamma$ (i.e., $\Delta \gamma_{data} / \Delta \gamma_{Bkg}$) of Ru+Ru over Zr+Zr for the top 20% f_{DbCS} contrary to the expectation in isobar collisions and the double ratio is 1.007±0.003 for 0-60% centralities.

Thank you for your attention!!

07/02/2023

Different asymmetry of the dumbbell

Why do we chose $Db_{asy} < 0.25$?

• $Db_{asy} = 1$ gives one side charge excess of positive/negative charge particles