Chiral Magnetic Effect in isobaric $\binom{96}{44}Ru + \binom{96}{44}Ru$ and $\binom{96}{40}Zr + \binom{96}{40}Zr$) collisions at $\sqrt{s_{\rm NN}} = 200$ GeV using Sliding Dumbbell Method at RHIC

Jagbir Singh

(for the STAR Collaboration) Department of Physics, Panjab University, Chandigarh, India email: jagbir@rcf.rhic.bnl.gov

Abstract

The chiral imbalance along with the magnetic field produced during 1 ² heavy-ion collisions may cause a charge separation in the magnetic field ³ direction, a phenomenon known as the chiral magnetic effect (CME). Ex-⁴ periments conducted in the last decade to search for the CME in heavy-ion ⁵ collisions have been inconclusive. The RHIC's isobar program was imple-⁶ mented in an effort to resolve this issue. In addition, a new technique for 7 investigating the CME called the Sliding Dumbbell Method (SDM) [1] has ⁸ been developed. This approach looks at each individual event to determine ⁹ the back-to-back charge separation. The SDM facilitates the selection of ¹⁰ events corresponding to various charge separations (f_{DbCS}) across the dumb-¹¹ bell. A partitioning of the charge separation distributions for each collision ¹² centrality into ten percentile bins is done in order to find potential CME-¹³ like events corresponding to the highest charge separation across the dumb-¹⁴ bell. In this contribution, the results based on CME sensitive γ -correlator ¹⁵ $(\gamma = \langle \cos(\phi_a + \phi_b - 2\Psi_{RP}) \rangle)$ will be discussed for each bin of f_{DbCS} in each ¹⁶ collision centrality for isobaric collisions (Ru+Ru and Zr+Zr) at $\sqrt{s_{\rm NN}} = 200$ GeV measured with the STAR detector. The background contribution due 17 ¹⁸ to statistical fluctuations is obtained by randomly shuffling the charges of ¹⁹ the particles in a particular collision centrality. The correlated background $_{20}$ is calculated for each f_{DbCS} bin of charged shuffled events using their corre-²¹ sponding original events.

22 References

₂₃ [1] J. Singh, А. Attri, М. М. Aggarwal, Proceedand of the DAE Symp. on Nucl. Phys. **64**, 830 (2019)ings 24 "http://www.sympnp.org/proceedings/64/E66.pdf". 25