Elliptic (v₂) and triangular (v₃) anisotropic flow of identified hadrons from the STAR Beam Energy Scan program

Petr Parfenov for the STAR Collaboration

National Research Nuclear University MEPhI

ICPPA 2020 - The 5th international conference on particle physics and astrophysics

Moscow (Russia), Oct. 5-9, 2020

- Introduction
- Anisotropic flow at RHIC
- The STAR detector at RHIC
- Analysis methods
- Results
- Summary and Outlook

Anisotropic collective flow at RHIC/LHC

Gale et al., Phys. Rev. Lett. 110, 012302

 V_n ($p_{T,}$ centrality) - sensitive to the early stages of collision. Important constraint for transport properties: EOS, η/s , ζ/s , etc.

 v_n of identified hadrons:

Mass ordering at $p_T < 2$ GeV/c

(hydrodynamic flow, hadron rescattering)

Baryon/meson grouping at $p_T > 2$ GeV/c

(recombination/coalescence), Number of constituent quark (NCQ) scaling

Anisotropic collective flow at STAR BES

- > Small change in $v_2(p_T)$ for Au+Au $s_{NN}=7.7 62.4$ GeV (STAR BES-I)
- > Strong energy dependence of the difference in v_2 of particles and antiparticles
- > $v_3(\sqrt{s_{NN}}, \text{centrality}, \text{PID}, p_T) ???$

The STAR detector at RHIC

Time Projection Chamber (TPC):

- > Tracking of charged particles with $(|\eta| < 1, 2\pi \text{ in } \varphi)$
- PID using dE/dx measurements Time-Of-Flight (TOF):
- |η| < 0.9, 2π in φ
- PID using time-of-flight information Event planes:
- > TPC ($|\eta| < 1$), BBC (3.8 < $|\eta| < 5.2$) Data set:

Au+Au at
$$\sqrt{s_{NN}} = 11.5-62.4 \text{ GeV}$$

Analysis technique: Event Plane Method (EP)

Used the same method as in Phys. Rev. C 88 (2013) 14902

Beam-energy dependence of v, and v,

*No p_r-dependent efficiency was applied

▼ V₂

▲ V₃

STAR Preliminary

50

60 70

20

30 40

$v_2(p_T)$ and $v_3(p_T)$ of charged hadrons

- > Similar shape of p_T dependence of normalized v_2 and v_3 for all centralities and beam energies
- > Small change of the shape of the $v_n(p_T)$ dependence with beam energy

$v_2(p_T)$ and $v_3(p_T)$ of identified hadrons

- > Similar shape of p_{τ} dependence of normalized v_2 and v_3 for all particle species
- > Small change of the shape of the $v_n(p_T)$ dependence with beam energy

$v_2(p_T)$ and $v_3(p_T)$ of identified hadrons

- > Similar shape of p_{τ} dependence of normalized v_2 and v_3 for all particle species
- > Small change of the shape of the $v_n(p_T)$ dependence with beam energy

v_2 and v_3 of protons and antiprotons for s_{NN} =27 GeV

Similar difference for $v_{_2}$ and $v_{_3}$ between p and \overline{p}

Beam-energy dependence of v_2 and v_3 particle-antiparticle difference

- Differences for v₂ and v₃ between particles and antiparticles increase with decreasing beam energy
- $v_n(p) v_n(\overline{p})$ shows steep rise with decreasing collision energy
- Absolute value of v_n(X)-v_n(X) is larger for (p,p) than for π[±] and K[±]

$v_2(p_T)$ and $v_3(p_T)$ of identified hadrons

NCQ scaling of v₂ and v₃

Antiparticles

- > NCQ scaling tests were performed for v_2 and v_3 for particles and antiparticles
- Scaling holds better for higher energies

Summary and outlook

Results of v_2 , v_3 in Au+Au collisions at BES energies $\sqrt{s_{NN}} = 11.5 - 62.4$ GeV are presented.

$(\sqrt{s_{NN}}, \text{centrality}, \text{PID}, p_T)$ -dependence of v_2 and v_3 :

- > Normalized v_2 and v_3 have similar p_T shape for all centralities and beam energies for each particle species
- > NCQ scaling holds better for higher energies

 $\mathbf{v}_{n}(\mathbf{X}) - \mathbf{v}_{n}(\mathbf{\overline{X}})$:

- > The difference increases with decreasing collision energy
- $\sim v_n(p) v_n(\overline{p})$ shows steep rise at lower collision energies
- > Absolute value of $v_n(X)-v_n(\overline{X})$ is larger for (p,\overline{p}) than for π^{\pm} and K^{\pm}

Thank you for your attention!

STAR Beam Energy Scan (BES) program

- A search for turn-off of new phenomena already established at higher RHIC energies (NCQ scaling breaking, R_{CP}, pair correlations, local parity violation)
- A search for signatures of a phase transition and a critical point $(v_{1,2}(\sqrt{s_{_{NN}}}), \text{ femtoscopy, fluctuations})$

BES-II and Fixed Target programs extend STAR's physics reach to region of compressed baryonic matter

Anisotropic collective flow

Initial eccentricity (and its attendant fluctuations), ε_n , drives momentum anisotropy, v_n , with specific viscous modulation

Particle identification

TPC

Particle identification via specific ionization energy loss (dE/dx). Particle identification at low momentum.

TOF

Particle identification at high momentum using time-of-flight information.

