Transverse Spin Dependent Azimuthal Correlations of Charged Pion Pairs in $p^{\uparrow}p$ Collisions at $\sqrt{s} = 200$ GeV at STAR

1

2

3

4

Babu Pokhrel for the STAR Collaboration Temple University, Philadelphia, PA, USA

Abstract

At leading twist, the transversity distribution function, $h_1^q(x)$, where x is the longitudinal momen-5 tum fraction of the proton carried by quark q, encodes the transverse spin structure of the nucleon. 6 Extraction of it is difficult because of its chiral-odd nature. In polarized proton-proton $(p^{\uparrow}p)$ collisions, 7 it can be coupled with a spin-dependent fragmentation function. This coupling leads to experimen-8 tally measurable oppositely charged hadron-pair (di-hadron) azimuthal correlations, A_{UT} , between 9 the spin of the fragmenting quark and the final state di-hadron, which directly probes $h_1^q(x)$. The 10 STAR experiment at RHIC has previously measured non-zero A_{UT} for $\pi^+\pi^-$ pairs using $p^{\uparrow}p$ collisions 11at $\sqrt{s} = 200$ GeV from 2006, corresponding to an integrated luminosity, L, of 1.8 pb⁻¹. In 2015, 12 STAR collected $L \sim 48 \text{ pb}^{-1}$ of $p^{\uparrow}p$ data at $\sqrt{s} = 200 \text{ GeV}$. This dataset provides highest precision 13 A_{UT} measurements at $\sqrt{s} = 200$ GeV to date, which covers quark momentum fractions 0.1 < x < 0.4, 14 sensitive to valence quark $h_1^q(x)$. We will present preliminary results on A_{UT} for $\pi^+\pi^-$ pairs based on 15 this dataset. 16