Transverse Spin Dependent Azimuthal Correlations of Charged Pion Pairs in $p^{\uparrow}p$ Collisions at $\sqrt{s}=200$ GeV at STAR

Babu Pokhrel, Temple University, Philadelphia, PA, USA for the STAR Collaboration

Abstract

At the leading twist, the transversity distribution function, $h_1^q(x)$, where x is the longitudinal momentum fraction of the proton carried by quark q, encodes the transverse spin structure of the proton. Extraction of it is difficult because of its chiral-odd nature. However, it can be coupled to a spin-dependent interference fragmentation function, leading to experimentally measurable azimuthal correlations, A_{UT} , between the spin of the fragmenting quark and oppositely charged final state hadron pairs (di-hadron). The STAR experiment at RHIC has previously observed non-zero A_{UT} for $\pi^+\pi^-$ pairs using $p^\uparrow p$ collision data at $\sqrt{s}=200$ GeV from 2006 and at $\sqrt{s}=500$ GeV from 2011, corresponding to integrated luminosities, L, of 1.8 pb⁻¹ and 25 pb⁻¹, respectively. In 2015, STAR collected $L\sim52$ pb⁻¹ of $p^\uparrow p$ collisions at $\sqrt{s}=200$ GeV. This dataset provides highest precision A_{UT} measurement at $\sqrt{s}=200$ GeV to date, which covers quark momentum fractions 0.1<x<0.4, and is sensitive to valence quark $h_1^q(x)$. We will present preliminary results on A_{UT} for $\pi^+\pi^-$ pairs based on this dataset.