

Physics with Tagged Forward Protons at STAR

Ivan Koralt (ODU) For The STAR Collaboration

The Annual Fall Meeting of the Division of Nuclear Physics Santa Fe, New Mexico, November 02 - November 06, 2010

<u>Outline</u>

- Physics Program and Motivation
 - Physics with Tagged Forward Protons and the STAR detector
- Very-Forward Detectors at STAR (RHIC) Roman Pots at STAR
 - Experimental Technique
 - Experimental Setup and Data Collection during RHIC 2009 Run (Runo9)
- Detector Performance during Runo9
 - Silicon Detector Efficiency
- Elastic event selection and preliminary single spin asymmetry result

I.Koralt (ODU) for the STAR Collaboration

11/11/10

Physics with Tagged Forward Protons and the STAR Detector

Elastic Scattering

Detect protons in the very forward direction using Roman Pots

- In <u>elastic scattering</u> protons remain intact.
- > A *Pomeron* (P) is exchanged.
- Pomeron exchange in pQCD consists of a color singlet combination of gluons.

Accessible t-region: Coulomb Nuclear Interference region.

Experimental Technique

- Elastically scattered protons have very small scattering angles Θ*, hence beam transport magnets determine their trajectory.
- The optimal position of the detectors is where scattered protons are well separated from beam protons.
- Need Roman Pot to detect scattered protons close to the beam without breaking accelerator vacuum.
- Beam transport equations relate measured position at the detector to the scattering angle.

Data Collection during Run09

Run Conditions:

>

 \succ

 \succ

 \triangleright

 \triangleright

 \triangleright

- Proton beam **momentum** = 100 GeV/*c*
- Beam **Polarization** (average for 4 fills):
 - $P_B \sim 0.60 \quad P_Y \sim 0.62$
- Luminosity ~ 1.5 · 10²⁹ cm⁻² sec⁻¹
- Good data sample (see colinearity plots on page 7)
- 40 hrs of data taking
- 35M Elastic Triggers Recorded (Elastic trigger using Roman Pot co-linearity)

I.Koralt (ODU) for the STAR Collaboration

Silicon Detector Efficiency

- Exclude all edge clusters and all identified hot/dead Si strips.
 - Not critical due to redundancy: 2 Si planes for each coordinate (x,y)
- Only ~20 dead/noisy strips per
 - ~14000 active strips (Active area limited by acceptance)
- Overall plane efficiency above 99%.

RP Labeling Scheme:

- E East, W West, H Horizontal, V Vertical, I Inner, O Outer Silicone Detector Planes:
- A, B, C, D

I.Koralt (ODU) for the STAR Collaboration

11/11/10

Selected Elastic Events

Very good data sample:

Out of ~35M of elastic triggers recorded during RUNo9, ~20M were selected after all cuts have been applied

(for more info look at: https://www.congressa.de/SPIN2010/upload/pp2pp-spin2010-a.ppt).

I.Koralt (ODU) for the STAR Collaboration

Single spin asymmetry (analyzing power) A_N

The interference between the <u>hadronic non-flip</u> and <u>electromagnetic</u> <u>spin-flip</u> amplitudes gives rise to the single spin asymmetry in the CNI region.

$$A_N = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$$

$$A_N(t) \approx \frac{\mathrm{Im}\left(\phi_{flip}^{em^*}\phi_{non-flip}^{had} + \phi_{flip}^{had^*}\phi_{non-flip}^{em}\right)}{d\sigma/dt}$$

- In the absence of hadronic spin flip A_N can be calculated (From known total cross section, ratio of real to imaginary parts of nuclear amplitude and QED).
- Measure A_N and its |t|-dependence to probe the contribution from the interference of <u>hadronic spin-flip</u> and electromagnetic amplitudes.

11/11/10

Single spin asymmetry A_N

We have all bunch polarization combinations: \\, \\, \\, \\, \\, \\, \\, \\, \\.

I.Koralt (ODU) for the STAR Collaboration

Summary and Conclusion

- Use of Roman Pots at STAR, provides measurements in the low-t region.
- Unique opportunity for Spin-Dependent Measurements at RHIC

> Runo9 Performance:

- ~20·10⁶ Elastic Events (after all cuts applied) recorded in 5 days, at \sqrt{s} =200 GeV and with β *=21 m.
- Excellent detector performance provided very clean data set.
- •<u>Si Detector Inefficiency</u>: Mainly due to the dead/noisy Si channels (~0.04% of the channels excluded from analysis).

Analysis: Analysis is in progress. First preliminary results on spin asymmetries are available.