

International Nuclear Physics Conference

Adelaide Convention Centre, Australia 11-16 September 2016

Probing the Origin of the Proton Spin with Jets at STAR

Carl Gagliardi

Texas A&M University

for the STAR Collaboration

Outline

- Introduction
- Gluon polarization with jets and di-jets
- Collins effect and transversity with jets

Gluon polarization without RHIC data

- Two global analyses, both published in 2010
- Very large uncertainties for the gluon polarization
 - Both shape and magnitude

RHIC: the Relativistic Heavy Ion Collider

- Search for and study the Quark-Gluon Plasma
- Explore the partonic structure of the proton
- Determine the partonic structure of nuclei

STAR as a jet and di-jet detector

- Large and uniform acceptance makes STAR an excellent jet detector
- Good agreement with NLO predictions for both inclusive jet and di-jet cross sections

Exploring gluon polarization at RHIC

$$A_{LL} = rac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} \propto rac{\Delta f_a \Delta f_b}{f_a f_b} \hat{a}_{LL}$$

 Δf : polarized parton distribution functions

For most RHIC kinematics, gg and qg dominate, making A_{LL} for jets sensitive to gluon polarization.

 $Jet x_{+} (= 2p_{-}/\sqrt{s})$

0.05

Inclusive jet A₁₁ from the 2009 RHIC run

STAR PRL 115, 092002

- STAR measured A_{LL} for inclusive jets at 200 GeV during the 2009 RHIC run
- Results draw a narrow road through the previous predictions
- Far more precise than previous measurements
- Systematically larger than expected by DSSV'08
- Positive gluon polarization in the sampled region x > 0.05

Gluon polarization with RHIC data

- Both DSSV and NNPDF have released new polarized PDF fits
- Both find the 2009 RHIC results provide significantly tighter constraints on gluon polarization than previous measurements
- Both find evidence for positive gluon polarization in the region x > 0.05

- DSSV: $0.19^{+0.06}_{-0.05}$ at 90% c.l. for 0.05 < x

- NNPDF: 0.23 ± 0.07 for 0.05 < x < 0.5

What's next?

- Need to increase precision in the currently sampled region to consolidate the observation of non-zero gluon polarization
- Need to extend sensitivity to lower x_g where current extrapolations have very large uncertainties

STAR

Next steps

- RHIC had very successful runs with 510 GeV pp collisions during 2012 and 2013
 - Higher center-of-mass energy probes lower x partons
- A_{LL} at 510 GeV is well described by global fits that previously gave a good description of the 2009 measurements at 200 GeV
- STAR took additional 200 GeV pp data during 2015
 - Will reduce uncertainties for A_{LL} at 200 GeV by a factor of ~1.6

Further constraining the x dependence

- Di-jet measurements sample a much narrower range of x values than inclusive jets
- Use to constrain the shape of $\Delta g(x)$
 - Minimize extrapolation errors outside the sampled region

Collins effect in jets at **STAR**

- With transversely polarized proton beams, pion production demonstrates an azimuthal modulation about the jet thrust axis
 - Arises through a convolution of quark transversity with the Collins fragmentation function
 - Appears as a $sin(\varphi_S \varphi_H)$ modulation
- Test the predicted universality of the Collins fragmentation function
- Extend Q² reach by two orders of magnitude compared to SIDIS
 - Probe TMD evolution

Transversity reach of **STAR**

- Green band indicates the region that STAR has probed to date
 - Will expand in the future
- Study a region where current transversity uncertainties are large
- Strong interactions don't experience u-quark dominance
 - Greater sensitivity to d-quark effects

First transversity signals in hadronic collisions

- Significant measurements of transversity convoluted with:
 - Di-hadron interference fragmentation function (IFF)
 - Collins fragmentation function
- Both have similar magnitudes in 200 and 500 GeV pp collisions
- Observations of transversity at very high scales
 - Q² up to >900 GeV² for Collins at 500 GeV
- Complementary results that obey different evolution equations

Final state: π^{+/-} azimuthal distribution in jets

Calculations from Kang et al, in preparation

- First Collins effect measurements in pp collisions are well described by calculations that convolute the transversity distribution from SIDIS with the Collins FF from e⁺e⁻ collisions
 - Tests the predicted universality of the Collins FF
 - No TMD evolution in this calculation
 - Maybe small?
 - Maybe cancels between numerator and denominator for asymmetries?

Many azimuthal modulations possible

Transversity x Collins

Linearly polarized gluons:

Possible explanation for the ridge in pp/pA?

Gluon Sivers function via Twist-3 relationship

- Precision data at fixed x, different \sqrt{s} ideal to constrain TMD evolution
- Upcoming 2017 data, when combined with existing 2011, '12, and '15 data, will provide stringent tests

Conclusions

- We still have a great deal to learn about the structure of the proton
- STAR is making significant contributions to several poorly constrained pieces of the puzzle
 - Gluon polarization
 - May contribute as much or more to the proton spin as the quarks and anti-quarks
 - Transversity and TMDs
 - Clear evidence of transversity has been seen in pp collisions
 - Test universality and TMD evolution
 - Measure transversity where current uncertainties are large
- More data have been recorded and are being analyzed at this moment, and still more are expected soon. Stay tuned!

RHIC: the world's first (and only!) polarized hadron collider

- Spin varies from rf bucket to rf bucket (9.4 MHz)
- Spin pattern changes from fill to fill
- Spin rotators provide choice of spin orientation
- Billions of spin reversals during a fill with little depolarization

Jet reconstruction in **STAR**

STAR as a jet detector

- Large and uniform acceptance makes STAR an excellent jet detector
- Good agreement with NLO predictions for inclusive jet cross section in 200 GeV pp collisions

First global analysis with RHIC pp data

 DSSV'08 was the first global analysis to include inclusive DIS, semiinclusive DIS (SIDIS), and RHIC pp data on an equal footing