Gluon polarization measurements from longitudinally polarized proton-proton collisions at STAR

Zilong Chang For the STAR Collaboration

Brookhaven National Laboratory, Upton, New York 11973

July 29th, 2019

International Nuclear Physics Conference 2019

The Proton Spin

Proton spin sum rule:

$$S_z = rac{1}{2} = rac{1}{2}\Delta\Sigma + \Delta G + L_{q,g}$$

- $\Delta\Sigma:$ ~ 0.3 constrained by DIS and SIDIS
- ΔG : poorly constrained by DIS and SIDIS
- L_{q,g}: unconstrained

• With fit to DIS and SIDIS data, $\Delta G = -0.34 \pm 0.46$ $\Delta G = 0.32 \pm 0.19$ for pos

Leader et al, PRD 82, 114018

Exploring Gluon Polarization at RHIC

 In longitudinally polarized *pp* collisions, define longitudinal double-spin asymmetry A_{LL} as:

- gg and qg dominate jet production + large $\hat{a}_{LL} \rightarrow$ making A_{LL} for jets sensitive to gluon polarization
- Experimentally, P_{B(Y)}: beam polarizations, and R: relative luminosity

$$A_{LL} = \frac{1}{P_B P_Y} \frac{N_{++} - R \times N_{+-}}{N_{++} + R \times N_{+-}}$$

INPC 2019, Glasgow, UK

Impact of Recent STAR Dijet Results

• Recent STAR dijet A_{LL} results at $\sqrt{s}=$ 200 GeV: both jets in $|\eta|<$ 0.8, or at

least one jet in 0.8 $<\eta<$ 1.8

Florian et al., arXiv:1902.10548 [hep-ph]

INPC 2019, Glasgow, UK

STAR Detectors

Jet Reconstructions

- Dataset: pp at $\sqrt{s} = 510$ GeV
- Inputs: charged tracks + electro-magnetic towers
- Algorithm: anti- k_T algorithm with R = 0.5
- Systematics study: PYTHIA + GEANT + Zero-bias events as embedding sample
 - Data-driven modified PYTHIA Perugia Tune
 - Correct jet *p*_T and dijet *M*_{inv} from measured detector jets to PYTHIA parton jets
 - Trigger bias and reconstruction uncertainty

Monte Carlo Tune Study

- Tuning based on matching between PYTHIA simulation and previous STAR charged π^{\pm} spectrum measurements STAR, PLB 637, 161 and STAR, PRL 108, 072302
- Default Perugia 2012 tune except a smaller $p_{T,0}$ scale parameter $(P_{90} = 0.213 \text{ default } 0.24)$

$$egin{aligned} \sigma &\sim rac{1}{(m{
ho}_T^2 + m{
ho}_{T,0}^2)^2} \ m{
ho}_{T,0} &= m{
ho}_{T,ref} imes (rac{\sqrt{s}}{\sqrt{s_{ref}}})^{P_{9g}} \end{aligned}$$

- Reduce multiple parton interaction ۰ contribution
- Jet spectrum comparison for three ۰ jet patch triggers, JP0, JP1 and JP2

Zilong Chang

INPC 2019, Glasgow, UK

Markers: data and lines: simulation

STAR, arXiv:1906.02740 [hep-ex]

Underlying Event Correction to Jet Transverse Energy

Two off-axis cones centered at ±^π/₂ away in φ and the same η relative to a given jet are used to estimate underlying event for that jet, ALICE, PRD 91, 112012

- The underlying event correction on jet transverse momentum: $dp_T = \frac{1}{2}(\rho_{plus} + \rho_{minus}) \times A_{jet}$
- Scan η dependence of underlying events
- Allow to study the underlying event contribution to jet A_{LL}

Effects of Underlying Events on Measured Jet ALL

• Define underlying event correction *dp_T* asymmetry:

$$A_{LL}^{dp_{T}} = \frac{1}{P_{A}P_{B}} \frac{\langle dp_{T} \rangle^{++} - \langle dp_{T} \rangle^{+-}}{\langle dp_{T} \rangle^{++} + \langle dp_{T} \rangle^{+-}}$$

 Underlying event correction dp_T asymmetries are consistent with zero, STAR, arXiv:1906.02740 [hep-ex]

• Underlying event contribution to measured jet A_{LL} is estimated to be $\sim 10^{-4}$, assigned as an uncertainty

Zilong Chang

INPC 2019, Glasgow, UK

STAR 510 GeV Inclusive Jet A_{LL} Measurements

- Much reduced systematic uncertainty than the previous measurements at $\sqrt{s} = 200$ GeV, STAR, arXiv:1906.02740 [hep-ex]
- Agree with recent polarized PDF predictions
- In the overlapping x_T = ^{2p_T}/_{√s} region, both results agree well
- Allow to access xg as low as 0.015

Zilong Chang

INPC 2019, Glasgow, UK

STAR 510 GeV Dijet ALL Measurements

 Dijet A_{LL} vs. invariant mass for four η topologies, STAR, arXiv:1906.02740 [hep-ex]

 $\begin{array}{l} \textbf{A/Forward-Forward:}\\ 0.3 < |\eta_{3,4}| < 0.9\\ \eta_3 \cdot \eta_4 > 0\\ \textbf{B/Forward-Central:}\\ |\eta_{3,4}| < 0.3\\ 0.3 < |\eta_{3,4}| < 0.9\\ \end{array}$

C/Central-Central: $|\eta_{3,4}| < 0.3$

D/Forward-Backward: $0.3 < |\eta_{3,4}| < 0.9$ $\eta_3 \cdot \eta_4 < 0$

- Topology binning narrows the sampled x_g and the cosθ* ranges
- Sampled x_g distributions much narrower than those from inclusive jets

Zilong Chang

Inclusive and Dijet A_{LL} from STAR 2013 510 GeV Data

Preliminary inclusive jet (left) and dijet (right) A_{LL} from STAR 2013 510 GeV data, Quintero, arXiv:1809.00923 [nucl-ex]

- Two η topologies for dijet A_{LL}
- The study of the systematic uncertainty is underway for the final results

Zilong Chang

INPC 2019, Glasgow, UK

STAR 510 GeV Forward $\pi^0 A_{LL}$

- Measured A_{LL} is small, less than 5×10^{-3}
- Allow to access $x_g \sim 10^{-3}$

Zilong Chang

INPC 2019, Glasgow, UK

STAR Forward Upgrade

- STAR is planning to install a Forward Calorimeter System (FCS), including an EMCal and a HCal, and a Forwarding Tracking System (FTS) in time for polarized 510 GeV run in 2022
- Dijet measurements with one or both jets in the forward region (2.8 < η < 3.7) will be one of the highlights of this upgrade
- With both jets in the FCS, it will provide gluon polarization at $x_{\rm g} \sim 10^{-3}$

https://drupal.star.bnl.gov/STAR/starnotes/public/sn0648

Zilong Chang

INPC 2019, Glasgow, UK

Conclusion

- STAR inclusive jet and dijet double-spin asymmetry measurements are unique to explore gluon polarization in the proton
- The 510 GeV results extend gluon polarization over $x \sim 0.015$ to $x \sim 0.2$, STAR, arXiv:1906.02740 [hep-ex]

Inclusive jets will constrain the magnitude of the gluon polarization 2 Dijets will constrain the shape of $\Delta g(x)$

- Inclusive jet and dijet A_{LL} are being studied with the 2013 pp data at $\sqrt{s} = 510$ GeV
- $\bullet\,$ The forward upgrade will provide new opportunities to probe low $x\sim 10^{-3}$ gluon polarization where the current polarized PDF studies show large uncertainties

Backup

Longitudinally polarized pp Dataset at STAR

• Selected longitudinally polarized pp datasets at $\sqrt{s} = 200$ and 510 GeV:

Year	\sqrt{s} (GeV)	Recorded Luminosity (pb^{-1})	B/Y polarization $\langle P \rangle$
2009	200	25	55
2012	510	82	50/53
2013	510	300	51/52
2015	200	52	53/57

• 2009 and 2012 data are in publication

• 2013 and 2015 data are under analysis

Inclusive Jet and Dijet Measurements

STAR has measured a series of inclusive jet and dijet cross-sections and longitudinal double-spin asymmetry $A_{LL}s$ at $\sqrt{s} = 200$ GeV

Inclusive jets:

 x_g as low as ~ 0.05 at $\sqrt{s}=200$ GeV

Dijets:

two jet correlation unfolds x_1 and x_2 at the leading order

$$\begin{aligned} x_1 &= \frac{1}{\sqrt{s}} (p_{T,3} e^{\eta_3} + p_{T,4} e^{\eta_4}) \\ x_2 &= \frac{1}{\sqrt{s}} (p_{T,3} e^{-\eta_3} + p_{T,4} e^{-\eta_4}) \\ M &= \sqrt{x_1 x_2 s} \end{aligned}$$

• Sampled x_g distributions by inclusive and dijets at $\sqrt{s} =$ 200 GeV STAR, PRD 95, 071103(R)

Underlying Event Systematics on Jet ALL

$$\delta A_{LL} = \frac{ \substack{p_{T,max} - \langle dp_T \rangle \times A_{LL}^{dp_T} \\ \int \\ p_{T,min} - \langle dp_T \rangle \times A_{LL}^{dp_T} \\ p_{T,max} - \langle dp_T \rangle \times A_{LL}^{dp_T} \\ \int \\ \frac{d\sigma}{dp_T} dp_T + \\ \frac{d\sigma}{dp_T} dp_T + \\ \frac{d\sigma}{dp_T} dp_T + \\ p_{T,min} - \langle dp_T \rangle \times A_{LL}^{dp_T} \\ p_{T,mi$$

Figure: Underlying event systematic uncertainty on inclusive jet A_{LL} for 2012 510 GeV data compared with systematic uncertainty due to relative luminosity.

Zilong Chang

INPC 2019, Glasgow, UK

STAR Charged π^{\pm} Spectrum

Figure: STAR charged π^{\pm} yields. STAR, PRL 108, 072302, 2012

Zilong Chang

INPC 2019, Glasgow, UK