Measurement of Longitudinal Single-Spin Asymmetry for W Boson Production in p+p collisions at STAR

Qinghua Xu (Shandong University) for the STAR Collaboration

Flavor separation of nucleon spin

• Sea quark polarization not well constrained by DIS data yet:

Spin sum rule (longitudinal):

$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + \langle L_{q,g} \rangle$$
Quark
spin,
(~30%)
-DIS
Gluon
spin,
Poorly
known,
RHIC
Orbital
Angular
Momenta
Little
known

 $\Delta \Sigma = \Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s}$

D. de Florian, R. Sassot, M. Stratmann, W. Vogelsang, PRD80 (2009)034030

Probing sea quark polarization via W production

• Quark polarimetry with W's in p+p collision (example of W⁺):

Spin asymmetry measurements:

$$A_{L}^{W^{+}} = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} = \frac{-\Delta u(x_{1})\overline{d}(x_{2}) + \Delta \overline{d}(x_{1})u(x_{2})}{u(x_{1})\overline{d}(x_{2}) + \overline{d}(x_{1})u(x_{2})} = \begin{cases} -\frac{\Delta u(x_{1})}{u(x_{1})}, \ y_{W^{+}} >> 0\\ \frac{\Delta \overline{d}(x_{1})}{\overline{d}(x_{1})}, \ y_{W^{+}} << 0 \end{cases}$$

$$A_{L}^{W^{-}} = \begin{cases} -\frac{\Delta d(x_{1})}{d(x_{1})}, & y_{W^{-}} >> 0\\ \frac{\Delta \overline{u}(x_{1})}{\overline{u}(x_{1})}, & y_{W^{-}} << 0 \end{cases}$$

★ W's naturally separate quark flavors★ no fragmentation function involved

 $\Lambda u(\mathbf{r})$

RHIC- a polarized proton+proton collider

- Polarization direction changes from bunch to bunch
- Spin rotators provide choice of spin orientation

RHIC performance with p+p collisions

- p+p collisions at 500/510
 GeV with long. polarization in 2009, 2011, 2012, 2013.
- STAR data samples for W boson A_L analysis:

STAR Longitudinal pp 500/510						
Run	L (pb⁻¹)	Р	P ² L (pb ⁻¹)			
2009	12	38%	1.7			
2011	9.4	49%	2.3			
2012	77	56%	24			
2013	246.2	56%	77.2			

STAR - Solenoid Tracker At RHIC

Magnet

• 0.5 T Solenoid

Triggering & Luminosity Monitor

- Beam-Beam Counters
 - $3.4 < |\eta| < 5.0$
- Zero Degree Calorimeters
- Vertex Position Detector

Central Tracking

- Large-volume TPC
 - |η| < 1.3</p>

Calorimetry

- Barrel EMC (Pb/Scintilator)
 - |η| < 1.0</p>
- Endcap EMC (Pb/Scintillator) East
 - 1.0 < η < 2.0</p>
- Forward Meson Spectrometer
 - 2.5 < η < 4.0

(- those marked red are relevant to W analysis)

INPC2019

W selection via W -> ev at STAR

- $W \rightarrow e + \nu$ Candidate Event:
 - Isolated track pointing to isolated EM cluster in calorimeter
 - Large "missing energy" opposite the electron candidate

QCD Background Event

- Several tracks pointing to energy deposit in several towers
- p_T sum is balanced by di-jet, no large "missing energy"

W selection at STAR : Jacobian peak

INPC2019

W selection ($|\eta| < 1$) : BG Estimation

Primary Background

Data-driven QCD : BG Events which satisfy e+/- candidate isolation cuts Second EEMC : due to "jet" escape without East EEMC based on real West EEMC

Weak decay Background

From Z->ee, and W->\u03ctv, determined from MC

STAR mid-rapidity W A_L –2011+2012

• First multiple-eta-bin A_L results from 2011+2012 data:

- A_L of W⁻ shows indication that data are larger than the DSSV predictions
- A_L of W⁺ is consistent with theoretical predictions with DSSV pdf.
- Indication of symmetry breaking of polarized sea.

STAR, PRL113(2014)72301

Global Analysis with STAR W $\rm A_{\rm L}$ results

 Big impact seen in NNPDFpol1.1 global analysis after including STAR A_L data.

NNPDF1.1, Nucl.Phys. B887,276 (2014) -...

• Polarized sea asymmetry:

W A_L results – STAR 2013

- Most precise W A_L results from 2013 STAR dataset
- Consistent with published RHIC results; with 40-50% smaller uncertainties than STAR 2011+2012 results
- Confirmed positively polarized anti-up quark first seen in the 2011+2012 data.

W A_L results – STAR 2013

STAR, PRD99, 051102R(2019)

- Most precise W A_L results from 2013 STAR dataset
- Consistent with published RHIC results; with 40-50% smaller uncertainties than STAR 2011+2012 results
- Confirmed positively polarized anti-up quark first seen in the 2011+2012 data.
- Combined STAR 2011-2013 results in comparison with theoretical predications

Impact of STAR 2013 W A_L results

• Reweighting based on NNPDF pol1.1 confirmed the polarized sea asymmetry: $\Delta \overline{u} > \Delta \overline{d}$ STAR, PRD99, 051102R(2019)

- ✓ The polarized flavor asymmetry is opposite to the unpolarized case !
- Compatible with Pauli suppression by the polarized valence quarks, among different models.

INPC2019

Z/ γ * A_L results from STAR

• A_L from Z⁰ can provide additional constraints on $\Delta \overline{u}$, $\Delta \overline{d}$, though statistics limited.

• STAR 2013 A_L results from Z/ γ

INPC2019

W $\rm A_{LL}$ results from STAR

• Double spin asymmetry of W can also provide access to $\Delta \overline{u}$, $\Delta \overline{d}$ with a different combination:

$$A_{LL}^{W^{+}} \propto \frac{\Delta u}{u} \frac{\Delta \overline{d}}{\overline{d}}, \quad A_{LL}^{W^{-}} \propto \frac{\Delta d}{d} \frac{\Delta \overline{u}}{\overline{u}} \qquad \left(A_{LL} = \frac{\sigma_{++} - \sigma_{+-}}{\sigma_{++} + \sigma_{+-}}\right)$$

STAR A_{LL} results is consistent with predictions from DSSV

Summary

- Sea quark polarization plays an important role in understanding the nucleon spin structure.
- Unique clean probe of sea quark polarization via W production at RHIC:

✓ W A_L results provide important constraints on $\Delta \overline{u}$, $\Delta \overline{d}$.

\square Most precise W A_L results from STAR 2013 data set:

- ✓ 40% uncertainty reduced compared to 2011+2012 data.
- Clear evidence of flavor asymmetry for polarized sea, with opposite sign to the unpolarized case.

-STAR, PRD99, 051102R(2019)

Backup slides

Flavor symmetry of the polarized sea from SIDIS

• Do we expect a symmetry breaking in the polarized sea?

- E866, Phys. Rev. D64 (2001) 052002

Expectation of W A_L at RHIC

- Large parity-violating asymmetries expected.
- Simplified interpretation at forward and backward rapidity:

STAR forward detector upgrade

• STAR forward upgrade:

- ✓ located at the West side of STAR
- ✓ coverage: 2.5 < h < 4</p>

• Key components:

- ✓ Calorimetry: ECal and HCal
- ✓ Tracking:
 Silicon tracker and
 small-strip Thin Gap Chambers (sTGC)

• Operation:

pp, pA and AA data taking in FY2021~2025 in parallel with sPHENIX data taking period.

• Physics:

enables unique opportunities to cold QCD and Heavy ion physics

Future RHIC Spin in 2021+

Year	√s (GeV)	Delivered Luminosity	Scientific Goals	Observable	Required Upgrade	42 LL DA LL
2021/22	p [↑] p @ 510	1.1 fb ⁻¹ 10 weeks	TMDs at low and high <i>x</i>	$\begin{array}{c} A_{UT} \text{ for Collins observables,} \\ \text{i.e. hadron in jet modulations} \\ \text{at } \eta > 1 \end{array}$	Ecal + Hcal +Tracking	The RHIC Cold QCD Plan
2021/22	<i>₽ ₽</i> @ 510	1.1fb ⁻¹ 10 weeks	$\Delta g(x)$ at small x	A_{LL} for jets, di-jets, h/ γ -jets at $\eta > 1$	Ecal + HCal	for 2017 to 2023 A Portal to the EIC
2024	p [↑] p @ 200	300 pb ⁻¹ 8 weeks	Subprocess driving the large A_N at high x_F and η	A_N for charged hadrons and flavor enhanced jets	Ecal + Hcal +Tracking	arXiv:1602.03922
2024	p [†] Au @ 200	1.8 pb ⁻¹ 8 weeks	Nature of the initial state and hadronization in nuclear collisions Clear signatures for Saturation	R_{pAu} direct photons and DY Dihadrons, γ -jet, h-jet, diffraction	Ecal + Hcal +Tracking	Forward detector upgrade
	p [†] Al @ 200	12.6 pb ⁻¹ 8 weeks	A-dependence of nPDF,	R_{pAl} : direct photons and DY	Ecal + Hcal +Tracking	required
			A-dependence for Saturation	Dihadrons, γ-jet, h-jet, diffraction		

- RHIC is the world's only polarized hadron hadron collider
- Unique physics opportunities in pp and pA

EIC

detector