First Measurements of Hyper-Nucleus $^{3}_{\Lambda}$ H Global Polarization in Au+Au collisions at STAR

Chenlu Hu (for the STAR Collaboration)

January 12, 2025

Abstract

⁶ The large angular momentum generated in non-central heavy-ion collisions con-⁷ tributes to the formation of vorticity within the medium, which subsequently induces ⁸ polarization of particles with non-zero spin. Recent model predictions suggest that the ⁹ decay products of a polarized ${}^{3}_{\Lambda}$ H-nucleus are highly sensitive to its spin structure [1]. ¹⁰ Additionally, in regions of high baryon density, the enhanced production of ${}^{3}_{\Lambda}$ H makes ¹¹ their polarization measurement feasible. ¹² In order to understand the spin structure of the ${}^{3}_{\Lambda}$ H hyper-nucleus as well as its pro-

¹³ duction mechanism, we have carried out a systematic study of the global polarization of ¹⁴ the $^{3}_{\Lambda}$ H hyper-nucleus using 3 GeV Au+Au collisions with about 2 billion events collected ¹⁵ during 2021 by STAR. Both 2-body and 3-body decays are used for the reconstruction of ¹⁶ the $^{3}_{\Lambda}$ H. Finally, the results will be compared with model predictions based on different ¹⁷ assumptions of spin structures.

18 References

1

2

3

4

5

[1] Kai-Jia Sun, Dai-Neng Liu, Yun-Peng Zhen, Jin-Hui Chen, Che Ming Ko, and Yu Gang Ma. Global polarization of (anti-)hypertriton in heavy-ion collisions, 2024.