Measurement of transverse single spin asymmetry for π^0 production in (non-)diffractive like events at RHICf and STAR experiments

INPC2025 30/May/2024

Seunghwan Lee (Sejong University)

for the RHICf and STAR collaborations

Supported in part by

Transverse single spin asymmetry (A_N)

• Definition

• The transverse single-spin asymmetry (A_N) represents a left-right asymmetry in particle production and reflects the underlying spin–momentum correlations in a transversely polarized proton.

Transverse single spin asymmetry (A_N)

• Theoretical framework

Sivers and Collins effects in pp collisions

- These frameworks are related to spin structure and orbital angular momentum
- Sivers and Collins frameworks can predict the large A_N (pQCD prediction ~ 0)

Transverse single spin asymmetry (A_N)

• Measurements

R. D. Klem et al., Phys. Rev. Lett. 36, 929 (1976)
D. L. Adams et al., Phys. Lett. B264, 462 - 466 (1991)
C. E. Allgowe et al., Phys. Rev. D 65, 092008 (2002)
I. Arsene et al., Phys. Rev. Lett. 101, 0420010 (2008)

(STAR) J. Adam et al., PRD 103, 092009 (2021)

• Non-zero A_N for π^{\pm} and π^0 in forward region

Motivation

- $A_{\rm N}$ for forward π^0 (2.7 < η < 4) and for RHICf π^0 (η > 6) exhibit similar $x_{\rm F}$ scaling behavior
- RHICf particles are expected to be dominated by the diffractive processes, but contribution from non-diffractive processes is also possible
- Diffractive processes could contribute the large A_N in RHICf coverage
- We want to find out the origin of A_N of π^0 with RHICf+STAR studies

Diffraction in p + p collisions

(d) Central diffraction (CD)

Diffractive process:

- Color Singlet Exchange (Pomeron exchange)
- Large Rapidity Gap
- Final state proton

• Color Singlet (such as photon or pomeron) exchange could contribute to the A_N

$A_{\rm N}$ with diffraction

• It shows the A_N with diffractive process within $p_{\rm T} > 2.0~{\rm GeV}/c$, $2.8 < \eta < 3.8$

• A_N for diffractive process is consistent with inclusive process

RHICf experiment

- RHICf detector installed in the far forward ($\eta > 6$) region of the STAR detector to collect transversally polarized p + p collisions at $\sqrt{s} = 510$ GeV
- RHICf detector consists of a large tower (TL, 40mm) and a small tower (TS, 20 mm), Each tower is composed of 4 position layers (1 mm) and 16 scintillating plate

RHICf experiment

• RHICf Collaboration has successfully measured the A_N of π^0 and nin P_T < 1.0 GeV/c and $\eta > 6$

Event classification method

Legend:

• Detector signal on-off cut is determined by min-bias trigger events

Event classification method are based on the large rapidity gap in diffractive process

(Non-)Diffractive-Likely-Event (DLE)

• We classified the three different processes with detector correlations

π^0 measurement

- π^0 candidates are selected based on the two-gamma invariant mass
- Background estimation and its fitting has been conducted using Gaussian Process Regression method
- Energy resolution $\sigma_E \sim 3.5\%$ and transverse momentum resolution $\sigma_{p_T} \sim 4.5\%$ for π^0 are observed *RHICf, PRL 124, 252501 (2020)*

Background A_N subtraction

$$A_{\mathrm{N}}^{S} = \left(1 + \frac{N_{B}}{N_{S}}\right) A_{\mathrm{N}}^{S+B} - \left(\frac{N_{B}}{N_{S}}\right) A_{\mathrm{N}}^{B}$$

 $A_{\rm N}^{S+B}$ = Signal + background $A_{\rm N}$ withtin 3σ

- $A_{\rm N}^{B}$ = Background $A_{\rm N}$ in 5 σ away from mass peak
- $A_{\rm N}^{\rm S}$ = Subtracted $A_{\rm N}$

 $N_{B(S)}$ = Integrated counts of background (signal) within 3σ

- Background subtraction was performed using A_N^B and the background-to-signal ratio (B/S ratio) within the 3σ of the mass peak
- $A_{\rm N}^{\rm B}$ was estimated from background events located more than 5 σ away from the mass peak.

Results

We observed the non-zero A_N under the SDLE, DDLE and NDLE conditions

The SDLE and DDLE show similar behavior and exhibit a more enhanced A_N compared to the inclusive

 NDLE condition shows a suppressed A_N relative to the inclusive result

Results

• A_N under (N-)DLE conditions exhibit different x_F scaling behavior

• Diffractive process may contribute the large A_N in $\eta > 6$ region

Summary

- A_N was measure for (non-)diffractive like events in $p^{\uparrow} + p$ collision at $\sqrt{s} = 510$ GeV at RHICf and STAR experiments
- Non-zero A_N were observed across all classified event types
- A_N for SDLE and DDLE show an enhancement relative to the inclusive event In contrast, A_N for NDLE is suppressed compared to the inclusive event
- These results suggest that diffractive processes may contribute to the large A_N observed in the very forward region.