

Femtoscopy of Strange Baryons in Heavy-ion **Collisions at RHIC-STAR**

Boyang Fu (for the STAR Collaboration)

Central China Normal University

The 29th International Nuclear Physics Conference, May 25-30, 2025, DCC, Daejeon, Korea

INPC 2025

In part supported by

Outline

- 1. Motivation
- 2. Femtoscopy
- 3. Lednicky-Lyuboshitz Approach
- 4. Analysis Details
- 5. Results
- 6. Summary

Motivation

• Strange Dibaryons have never been found experimentally H-dibaryon $\rightarrow \Lambda + \Lambda / p + \Xi^-$, (Strange)Dibaryon $\rightarrow p + \Omega^-$ • Possible bound state: • Hyperon-Nucleon (Y-N) and Hyperon-Hyperon (Y-Y) interactions provide important information to constrain the Equation-of-State and help to understand the inner structure of compact stars

Particle	Mass	Quark com-	Decay mode
	(MeV)	position	
f_0	980	q ar q s ar s	$\pi\pi$
a_0	980	q ar q s ar s	$\pi\eta$
K(1460)	1460	q ar q q ar s	$K\pi\pi$
$\Lambda(1405)$	1405	$\mathrm{qqqs}ar{q}$	$\pi\Sigma$
$\Theta^{+}(1530)$	1530	${ m qqqq}{ m s}$	KN
Η	2245	uuddss	$\Lambda\Lambda$
$N\Omega$	2573	qqqsss	$\Lambda \Xi$
[I] [I]	2627	qqssss	$\Lambda \Xi$
$\Omega\Omega$	3228	SSSSSS	$\Lambda K^- + \Lambda K^-$

Sungtae Cho, et al. (ExHIC), Phys. Rev. C 84, 064910 (2011)

Femtoscopy

• Two-particle correlation function:

2025/05/26

- In high-energy experiment, Femtoscopy is inspired by Hanbury Brown and Twiss interferometry (Astronomy)
- Study the spatial and temporal extent of emission source
 - Quantum Statistics (Fermi-Dirac, Bose-Einstein)
 - Final-state Interactions (Coulomb, Strong interaction)
 - Collision Dynamics

Experimental

=
$$\mathcal{N} \frac{N_{same}(k^*)}{N_{mixed}(k^*)}$$

 \mathcal{N} : Normalization factor $N_{same}(k^*)$: same event $N_{mixed}(k^*)$: mixed event

>1: Attraction =1: No Correlation <1: Repulsion

> Nature 178 1046-1048(1956) ALICE Coll. Nature 588, 232–238 (2020)

Lednicky-Lyuboshitz Approach

$$CF(k^*) = \int d^3r \, * \, S(r^*) \, | \, \psi(r^*, k^*) \, |^2$$

0

• Assumptions:

- Smoothness approximation for source function
- Static and spherical Gaussian source
- Only consider s-wave
- Effective range expansion for $\psi(r^*, k^*)$ 0

• **Physics Parameters:** R_G : Spherical Gaussian source f_0 : Scattering length d_0 : Effective range

il***

Wave function:

$$\psi(r^*, k^*) = e^{-ik^*r^*} + f(k^*) \frac{e^{-ik^*r^*}}{r^*}$$

Scattering amplitude: 0

• W/O Coulomb:

$$f_c(k^*) = \left[\frac{1}{f_0} + \frac{1}{2}d_0k^{*2} - ik^*\right]^{-1}$$

• W/ Coulomb:

$$f_c(k^*) = \left[\frac{1}{f_0} + \frac{1}{2}d_0k^{*2} - \frac{2}{a_c}h(\eta) - ik^*A_c(\eta)\right]^{-1}$$

RHIC-STAR Experiment

2025/05/26

Analysis Details

• Dataset: Isobar collisions (Ru+Ru, Zr+Zr) @ 200 GeV ~ 3.9 billion minimum-bias events Au+Au collisions @ 200 GeV (run11, run14, run16) ~ 2.5 billion minimum-bias events Au+Au collisions @ 3 GeV (run21) ~ 2 billion minimum-bias events

• Hyperon reconstruction via Helix-swimming method

 $\Lambda \to p + \pi^{-}, BR = 63.9\%$ $\Xi^- \to \Lambda + \pi^-$, BR = 99.9% $\Omega^{-} \rightarrow \Lambda + K^{-}, BR = 67.8\%$

INPC 2025 — Boyang Fu (CCNU)

p-E⁻ Correlation Function @ 200 GeV

- CFs show enhancement at low k*
- Simultaneously fit with L-L function for 9 centralities (Au+Au and Isobar) to extract $R_{G'} f_0$ and d_0 by Bayesian method
- UrQMD + HAL QCD model is consistent with data

LL Fit	f_0 (fm)	d_0 (fm)	χ^2/ndf
Ru+Ru			
Zr+Zr	$0.69^{+0.11}_{-0.10}$	$12.60^{+5.12}_{-7.00}$	1.23
Au+Au			

Y. Kamiya, et al., Phys. Rev. C 105, 014915 (2022)

p-E⁻Interaction

- First experimental constraints of strong interaction parameters in $p-\Xi^-$ Paris in heavy-ion collisions
- Extracted spin averaged scattering length:

 $f_0 = 0.69^{+0.11}_{-0.10}$ fm (stat. + sys.)

- <u>Attractive</u> strong interaction
- Shallow interaction compared to p-p interaction
- Consistent with HAL QCD prediction

Λ-Λ Correlation Function @ 3 GeV

- Λ - Λ correlation function shows suppression at small **k***
- Compared with UrQMD + potential, it is found that the simulation with positive f_0 is in better agreement with data

=> Hints at an attractive interaction in Λ - Λ pairs

• Need more precise data to confirm => High statistics Isobar and Au+Au collisions

Potential	f_0 (fm)	d_0 (fm)	χ^2/ndf
NSC97a [1]	0.33	12.37	1.53
NF50 [2]	0.77	4.27	1.61
ND52 [3]	-23.96	2.59	2.24
ND50 [3]	10.63	2.04	4.02

[1] P. M. M. Maessen, et al, Phys. Rev. C 40 (1989) 2226

[2] M. M. Nagels, et al, Phys. Rev. D 20 (1979) 1633

[3] M. M. Nagels, et al, Phys. Rev. D 15 (1997) 2547

p-Ω⁻ Correlation Function @ 200 GeV

- CFs obtained by HAL QCD theory with extracted *R_G* by L-L model is consistent with the data

Takumi Iritani, et al. (HAL QCD), Phys. Lett. B792 (2019)

p-Ω⁻ Correlation Function Ratio

Туре	f_0 (fm)	d_0 (fm)	BE (MeV)	χ^2 /ndf	p-value	
V _I [1]	1.12	1.16		1.66	0.014	
V [2]	-3.38	1.31	2.15	0.76	0.812	
V _{III} [1]	-1.29	0.65	26.9	2.02	0.001	

- By taking CF ratio, Colomb effect can be largely canceled
- CF ratio shows enhancement at low k* and depletion around k* ~ 100 MeV/c
 - Due to the presence of shallow bound state
- \circ The potential V_{II}, with a p-value of 0.812, provides a better description of the data

[1] Kenji Morita, et al., Phys. Rev. C 94, 031901 (2016) [2] Kenji Morita, et al., Phys. Rev. C 101, 015201 (2020)

$p-\Omega^{-}$ Interaction

	Spin ave.	Quintet	HAL QCI
f_0 (fm)	$-4.9^{+0.5}_{-0.7}$	$-4.3^{+0.4}_{-0.7}$	-3.4
<i>d</i> ₀ (fm)	$2.3^{+0.4}_{-0.5}$	$1.5^{+0.5}_{-0.7}$	1.3
BE (MeV)	$1.5^{+1.1}_{-0.6}$	$1.6^{+1.4}_{-0.5}$	2.3

- First experimental constraints in heavy-ion collisions of strong interaction parameters in p- Ω^- pair
- Extracted negative f_0 ($|f_0| > 2d_0$) by Spin average method and Quintet method
 - First experimental evidence of Strange Dibaryon
- Calculate Binding Energy (BE) via Betha formula: 100 100

Reduced mass:
$$m_{p\Omega} = \frac{m_p m_{\Omega}}{m_p + m_{\Omega}}$$

$$BE_{p\Omega} = \frac{1}{2m_p \Omega d_0^2} (1 - \sqrt{1 + \frac{2d_0}{f_0}})^2$$

 Calculated BE are consistent with HAL **QCD** prediction

Strong Interaction Parameters

• Extracted positive f_0 in p- Ξ^- pair -> Weakly attractive interaction ^o Extracted source size in p- Ξ^- , p- Ω^- pairs show a linear distribution (Centrality dependence $R_G^{central} > R_G^{peripheral}$)

• Extracted negative f_0 in p- Ω^- pair -> Support the formation of bound state

INPC 2025 — Boyang Fu (CCNU)

14

Summary

- Measured the correlation function of $p \Xi^- \oplus \bar{p} \bar{\Xi}^+, \Lambda \Lambda$ and $p - \Omega^- \oplus \overline{p} - \overline{\Omega}^+$ at STAR
- Extracted strong interaction parameters through L-L model 0
 - First experimental results of $p \Xi^-$ interaction -> Weakly attractive interaction
 - ° $\Lambda \Lambda$ hints at weakly attractive interaction
 - ^o First experiment evidence of Strange-Dibaryon in p Ω^- channel
- Extracted Binding Energy BE = $1.6^{+1.4}_{-0.5}$ MeV in p $\Omega^- \oplus \bar{p} \overline{\Omega}^+$ pair

