



#### Azimuthal Anisotropy Measurement by STAR

#### Li Yi for STAR collaboration Purdue University



# Outline

- Physics motivation
- Beam energy dependence
  - $v_2{4}(p_T)$
  - $v_2$ {2} and  $v_2$ {4} difference
- v<sub>3</sub> measurement
  - Centrality,  $\Delta \eta$ ,  $p_T$  dependence
- Flow fluctuation and nonflow
  - Isolation of nonflow and flow for  $v_2$  from  $\eta{-}\eta$  cumulant
  - $v_2$  fluctuation upper limit from  $v_2$ {2},  $v_2$ {4}
- Summary

Concentrate on AuAu; dAu separate talk F. Wang

## **Physics Motivation**





B. Alver, G. Roland, PRC81 (2010) 054905

B. Schenke, S. Jeon, C. Gale PRL 106, 042301

- Particle collectivity to probe QGP early stage
- Event-by-event initial state geometry fluctuation
   -> Final state momentum anisotropy, odd harmonics
- Unknown reaction plane, fluctuation of participant plane
   -> Flow + flow fluctuation + nonflow

#### The Solenoidal Tracker At RHIC (STAR)

BEMC

TOF

ÁR

Magnet

TPC

upVPD

BBC

Time Projection Chamber: dE/dxl, PID, momentum
 Forward Time Projection Chambers (2.8 < | η < 3.8)</li>
 Time Of Flight detector: PID, μ/β
 Barrel ElectroMagnetic Calorimeter: E/p, trigger
 Endcap ElectroMagnetic Calorimeter (1.0 ≤ | η | < 2.0)</li>

orward Meson Spectrometer (2.5 <

© Maria & Alex Schmah

**EEMC** 

### v<sub>2</sub> Beam Energy Dependence



STAR 130 and 200 GeV: Phys. Rev. C 66,873 034904 (2002); Phys. Rev. C 72,790 014904 (2005)

E877: Nucl. Phys. A 638, 3c(1998). E895: Phys. Rev. Lett. 83, 1295 (1999).

- v<sub>2</sub> increases as beam energy.
  - $v_2(p_T)$
  - <p<sub>T</sub>>
  - particle composition

#### $v_2{4} (p_T)$ Beam Energy Dependence



- v<sub>2</sub>(p<sub>T</sub>) indeed same w/ ± 30% < 10% below 1 GeV/*c*
- <v2> increase mainly
  due to <p7>

STAR: Phys. Rev. C 86 (2012) 054908

 $v_2$  syst. err. ~ 7%

#### v<sub>2</sub>{4} Comparison with Viscous Hydro



 Viscous hydro with constant η/s and zero net baryon density can not reproduce the trend of experimental data.

### v<sub>2</sub>{2}, v<sub>2</sub>{4} Beam Energies Dependence

STAR: Phys. Rev. C 86 (2012) 054908

20-30 % Au+Au



 v<sub>2</sub>{4}/v<sub>2</sub>{2} is closer to 1 at the lower collision energies, indicating smaller nonflow and/or fluctuation.

#### AuAu@200GeV v<sub>3</sub> Centrality Dependence

STAR: Phys. Rev. C 88 (2013) 14904



- v<sub>3</sub> centrality dependence.
- $v_3$  depends on methods. Need to look at  $\Delta \eta$  window for methods.

#### $v_3$ Measurement $\Delta\eta$ Dependence



 Strong Δη-dependence Nonflow, and/or fluctuation from event plane decorrelation?

• Model comparisons have to use same  $|\Delta \eta|$ 

#### v<sub>3</sub> Comparison with other Experiment



**EP** decorrelation: Hannah Petersen, QM12  $\Psi_3$ Ψ3, b-direction Xiao, Liu, Wang, 1208.1195 z-direction HP, Batthacharya, Bass, Greiner PRC 84 (2011)  $\langle \cos 3(\phi - \Psi_{EP}) \rangle$  $\phi, \Psi_{EP}: \Delta \eta$  $v_3 \approx$  $\overline{\sqrt{2\langle\cos 3(\Psi_{EP}^{A}-\Psi_{EP}^{B})\rangle}}\Psi_{EP}^{A},\Psi_{EP}^{B}:\Delta\eta_{EP}}$ STAR TPC:  $\phi$ , EP are both in TPC STAR FTPC:  $\phi$  TPC, EP FTPC PHENIX:  $\phi$  central arms, EP RXN

 $v_3(p_T)$  same between RHIC and LHC.

# $v_3(p_T)$ Comparison with Models

#### AuAu@200GeV



STAR: Phys. Rev. C 88 (2013) 14904

Qualitative agreement with data:

- η/s = 0.08 hydro w/
   Glauber initial condition
- NeXSPheRIO at low  $p_T$
- PHSD mid central collision Model  $|\Delta \eta|$ ?

# v<sub>2</sub> Flow Fluctuation Upper Limit



STAR: Phys. Rev. C 86 (2012) 014904

- Compare models to data fluctuation upper limit
- Models have eccentricity fluctuations only. Data may have other fluctuation sources.
- Premature to conclude which  $\varepsilon$  model is favored.

## **Isolation of Flow and Nonflow** using 2- and 4-Particle η-η Cumulants



Xu, LY et al, : PRC86, 024901(2012)

 $V_{2}\{\eta_{\alpha},\eta_{\beta}\} = v(\eta_{\alpha})v(\eta_{\beta}) + \sigma(\eta_{\alpha})\sigma(\eta_{\beta}) + \sigma'(\Delta\eta) + \delta(\Delta\eta)$  $V_{4}\{\eta_{\alpha},\eta_{\alpha},\eta_{\beta},\eta_{\beta}\}^{1/2} = v(\eta_{\alpha})v(\eta_{\beta}) - \sigma(\eta_{\alpha})\sigma(\eta_{\beta}) - \sigma'(\Delta\eta)$  $V_{4}\{\eta_{\alpha},\eta_{\alpha},\eta_{\beta},\eta_{\beta}\}^{1/2} = v(\eta_{\alpha})v(\eta_{\beta}) - \sigma(\eta_{\alpha})\sigma(\eta_{\beta}) - \sigma'(\Delta\eta)$ 

$$\Delta V\{2\} = V\{\eta_{\alpha}, \eta_{\beta}\} - V\{\eta_{\alpha}, -\eta_{\beta}\} = \Delta \sigma' + \Delta \delta \qquad \Delta V\{4\}^{1/2} = -\Delta \sigma'$$

# $\Delta$ η-dependence $\sigma'(\Delta \eta)$

AuAu@200GeV 20-30%



 $\Delta V\{4\}^{1/2} = -\Delta \sigma'$ 

• Flow fluctuation appears independent of  $\Delta \eta$ .

#### $\Delta\eta$ -Dependence $\delta(\Delta\eta)$



 $\Delta V\{2\} = V\{\eta_{\alpha}, \eta_{\beta}\} - V\{\eta_{\alpha}, -\eta_{\beta}\} = \Delta \sigma' + \Delta \delta$ 

#### 'Flow' vs η



- $v_2$  flow seems independent of  $\eta$ .
- (Fluctuation/flow)<sup>2</sup> for  $v_2 \approx 13\%$



•  $\delta_n$  drops as  $\eta$  gap increases.

### Summary

 <v<sub>2</sub>{4}> values rise with increasing beam energy Possibly related to weaker radial flow at the lower

energy, <p<sub>T</sub>>.

- $v_3$  shows strong  $\Delta \eta$  dependence
  - Event plane decorrelation
  - Nonflow
- $v_2$  in AuAu@200GeV 20-30%: Nonflow  $\delta_2 / v_2^2 \sim 4\%$ Flow fluctuation  $\sigma_2^2 / v_2^2 \sim 13\%$