

Selected STAR Highlight

Shengli Huang for the STAR collaboration

Stony Brook University, Chemistry Department

Physics to address:

Initial Geometry

N Y C

t<0.5fm

Pre-equilibrium

Longitudinal structure

Strong EM field

 $\gamma + \gamma$, $\gamma +$ nucleus interaction

STAR Measurement:

Small system: flow, jet

Flow correlation and decorrelation

 $D^0 v_1$, Λ polarization

Low p_T di-lepton, J/ ψ

N Y C

τ<0.5fm

Flow in Small Systems

Two particle correlation in d+Au@200GeV with $|\eta| < 0.9$ and $|\Delta \eta| > 1.0$

Event activity: BBC (-2>η>-5) HM: ridge + jet LM: jet

Ridge signal (flow) is extracted by template fit

- $Y_{templ.}(\Delta \phi) = \mathsf{F} \times Y_{peri.}(\Delta \phi) + Y_{ridge}(\Delta \phi)$
- where
- $Y_{ridge}(\Delta \phi) = G \times (1 + 2 \times \sum_{n=2}^{4} V_{n,n} \times \cos(n\Delta \phi))$ ATLAS:PRL 116, 172301 (2016)

 v₂ from template fit shows a universal trend as a function of <dN/dη>

Flow in Small Systems

 v₂ from template fit shows a universal trend as a function of <dN/dη>

Flow in Small Systems

 v₂ from template fit shows a universal trend as a function of <dN/dη>

- v₂ from template fit shows a universal trend as a function of <dN/dη>
- A smooth trend from small to large system.
- > Driven by hydro flow?

 $c_2{4} vs < dN/d\eta >$

$$c_2\{4\} = \ll e^{-i2(\phi_i + \phi_j - \phi_k - \phi_l)} \gg -2 \ll e^{-i2(\phi_i - \phi_j)} \gg \phi_i, \phi_j, \phi_k, \phi_l$$
 are the azimuthal angles of four different particles in an event ; $\langle\!\langle \rangle\!\rangle$ represents the average over all particles from all events within a given multiplicity range

 $v_2\{4\} = \sqrt[1/4]{-c_2\{4\}}$

- c₂{4} changes sign at high multiplicity (|η|<0.9) in d+Au collisions at 200 and 62.4 GeV
- Collectivity in small system

Semi-inclusive Jets in p+Au@200 GeV

Event activity by BBC
 Suppression of away side jet above 10 GeV/c
 Due to bias of event selection?
 Is there still room for medium modification?

^{6/23/19}

> Sensitive to initial condition, η /s etc

Niseem Abdelrahman Wed 2:40 PM ,301

➢ More constraints on hydro calculation

Stronger decorrelation at RHIC energy.

> Hydro. cannot describe LHC and RHIC data simultaneously

Results of 54.4 and 27.6 GeV will come soon!
6/23/19
Shengli Huang

$D^0 v_1$: Tilted QGP and EM field Effect

In non-central collisions, the initial collective longitudinal flow velocity depends on x.

- Charm dragged by tilted QGP, leads to large v₁
- ➢ Due to EM field, further splitting between D^0 and $\overline{D^0}$ v₁

Initial conditions

Das et. al., PLB768(260)2016

D⁰ directed flow

Subhash Singha Wed 6:10 PM,301

- > First observation of $D^0 v_1$, ~10 times larger than kaon's
- Also larger than prediction of hydro

D⁰ direct flow

 \succ First observation of D⁰ v₁, ~10 times larger than kaon's

Also larger than prediction of hydro and AMPT

 $\succ D^0$ and $\overline{D^0}$ v₁ are same within uncertainties. Measurement not yet sensitive to EM field _{6/23/19} Shengli Huang

arLambda polarization and Influence of B field

In non-central collisions, the initial collective longitudinal flow velocity depends on x.

- > Due to B field, further splitting is expected between Λ and $\overline{\Lambda}$

√s_{nn} (GeV)

ver energies.

Λ global polarization@200GeV

STAR, arXiv:1805.04400

 Global polarization of Λ is observed for first time in Au+Au@200 GeV

 $\begin{aligned} P_H(\Lambda) \ [\%] &= 0.277 \pm 0.040 (\text{stat}) \pm {}^{0.039}_{0.049} (\text{sys}) \\ P_H(\bar{\Lambda}) \ [\%] &= 0.240 \pm 0.045 (\text{stat}) \pm {}^{0.061}_{0.045} (\text{sys}) \end{aligned}$

- Precision not sufficient to see the difference between Λ and $\overline{\Lambda}$
- Analysis of >x10 of 27.6 GeV data is underway!

Local polarization (along beam direction) shows a quadrupole structure, the sign is different from the hydro calculation. It is still not understood

Λ local polarization@200GeV

- Local polarization (along beam direction) shows a quadrupole structure, the sign is different from the hydro calculation. It is still not understood
- The sign may depend on the relation of magnitude between spatial and flow anisotropy from BW model S. Voloshin, arXiv:1710.08934 6/23/19

photon-photon interaction $\propto Z^4$

photonuclear interaction $\propto Z^2$

STAR

How about these processes in hot QGP?

A new tool to study the QGP properties!

STAR, PRL121 (2018) 132301

➤ Significant di-lepton enhancement at low p_T is observed!

STAR, PRL121 (2018) 132301

Comparing to model calculations:

- $\succ \rho$ broadening in QGP can not explain the enhancement!
- Qualitatively consistent with model including photon-photon interactions

Significant J/ ψ enhancement at low p_T relative to extrapolation

- 60-80% Au+Au vs. 47-75% Ru+Ru: Similar hadronic contribution Different contribution from photon-photon interactions
- Around 3.7σ difference between Ru+Ru and Zr+Zr (estimated from 840M events). STAR recorded 1.6B events for each of them!

Positive BNL internal review last Nov. and will be ready for 2022
 Very valuable for both cold QCD and heavy ion physics

What STAR can do in small systems in future?

Enhanced STAR acceptance/kinematics

New subsystems: iTPC ($|\eta| < 1.5$, PID), EPD ($2.1 < |\eta| < 5$) and eTOF (2019+) Forward upgrade with p_T , E_T and some ID (K_s , Λ , π^0) at 2.5 < η < 4 (2021+)

Enable quantitative improvements over Geometry-scan I

- Quantitative control of non-flow systematics, behavior of collectivity at low N_{ch}.
- Longitudinal dynamics and their impact on existing results
- Comprehensive studies of multi-particle correlation (like LHC)
 - Multi-particle cumulants, symmetric and asymmetric cumulants with subevent methods

As a first step, STAR proposes a one-week O+O run before 2022
 Take 400 M minbias events and 200 M 0-5% central events

Why O+O?

► A O+O run at LHC around horizon (likely in 2023)

Year	Systems, $\sqrt{s_{_{\rm NN}}}$	Time	L _{int} Arxiv.1812.06772
2021	Pb-Pb 5.5 TeV	3 weeks	2.3 nb^{-1}
	pp 5.5 TeV	1 week	3 pb^{-1} (ALICE), 300 pb^{-1} (ATLAS, CMS), 25 pb^{-1} (LHCb)
2022	Pb-Pb 5.5 TeV	5 weeks	3.9 nb^{-1}
	O–O, p–O	1 week	$500 \ \mu { m b}^{-1}$ and $200 \ \mu { m b}^{-1}$
2023	p–Pb 8.8 TeV	3 weeks	0.6 pb^{-1} (ATLAS, CMS), 0.3 pb^{-1} (ALICE, LHCb)
	pp 8.8 TeV	few days	1.5 pb^{-1} (ALICE), 100 pb^{-1} (ATLAS, CMS, LHCb)

Proposed LHC run schedule

- > A O+O run at RHIC after BES II is timely
 - First comparison between RHIC & LHC with ~identical Glauber geometry but different sub-nucleon fluctuation (Q_s) for a factor of 10 difference in energy

less centrality bias & better selection of geometry (N_{part}, ϵ_n) 6/23/19

Interplay of nucleon vs subnucleon fluctuations

Summary

- \succ Collectivity in small system \rightarrow Small QGP droplet?
- Flow correlations and decorrelation, which supply new constrain on 3D initial condition and medium properties
- \succ v₁ of D⁰ to probe the tilted QGP and large signal is observed. Measured difference between D⁰ and $\overline{D^0}$ is not precise enough to be sensitive to EM field
- Study vorticity using A global/local polarization measurement, the local vorticity shows quadrupole structure which can not be explained by hydro calculation
- > We measured low p_T di-lepton and J/ ψ production from strong EM field, which provide new tool to study the QGP

Summary

- Flow correlations and decorrelation, which supply new constrain on 3D initial condition and medium properties
- \succ v₁ of D⁰ to probe the tilted QGP and large signal is observed. Measured difference between D⁰ and $\overline{D^0}$ is not precise enough to be sensitive to EM field
- Study vorticity using A global/local polarization measurement, the local vorticity shows quadrupole structure which can not be explained by hydro calculation
- > We measured low p_T di-lepton and J/ ψ production from strong EM field, which provide new tool to study the QGP
- Recently STAR upgrade(iTPC, EPD and eTOF) and future approved STAR forward upgrade significantly extend STAR acceptance and PID ability
- These upgrades will provide new opportunity to study collectivity in small systems
- STAR proposes O+O run before 2022, which will be helpful to study initial geometry, thermalization and jet quench in small system

	Hydro-1 [43]	Hydro $-2^{a/b}$ [44]
η/s	0.05	0.12
Initial conditions	TRENTO Initial conditions	IP-Glasma Initial conditions
Contributions	Hydro only	(a) Hydro + Hadronic cascade
		(b) Hydro only

(1) P. Alba, et al. PRC 98, 034909 (2018)

(2) B.Schenke, et al. PRC 99, 044908 (2019)

Hydro. calculations which can describe single particle $v_n\{k\}$ need more work for 3-particle correlations.

- Extend the lever-arm to disentangle contributions from three stages
 - Where initial-state interaction become sub-dominant?
 - What is the role of pre-equilibrium vs. hydrodynamics?

Further system-size scan needed! Only₄RHIC can do this!

No energy dependence of v_2 in pA vs AA

Different energy dependence of v₃ in pA vs AA?

Decent measurement of PID flow Decent measurement of multi-particle correlation More to come...

Future Small System Scan

STAR with new detector capability for collectivity in small system:

- $\checkmark\,$ Large acceptance to handle the nonflow
- ✓ Study longitudinal decorrelation effect on flow measurement
- ✓ Multi-particle cumulant in different rapidity

Opportunity for further small system scan at RHIC :

- ✓ Extend the level-arm with small AA collisions
- Initial geometry is different between symmetric and asymmetric collisions

Where initial-state interaction become sub-dominant? The role of pre-equilibrium vs. hydro?

Outlook: O+O run

Where initial-state interaction become sub-dominant? The role of pre-equilibrium vs. hydro? Turn-on of jet quenching and heavy-flavor "thermalization"?

Outlook: O+O run

Where initial-state interaction become sub-dominant? The role of pre-equilibrium vs. hydro? Turn-on of jet quenching and heavy-flavor "thermalization"? System size scan needed!! Only RHIC can do!!

Low $p_T J/\psi$ enhancement

Much larger than expectation from hadronic production

Qualitatively described by photonuclear interaction

6/22/19

Shengli Huang