Search for the chiral magnetic effect

 with spectator and participant planes in
STAR

Jie Zhao (for the STAR collaboration) Jan. 142021

Purdue University, West Lafayette

Office of Science

Outline

> Chiral Magnetic Effect (CME)
> RHIC-STAR experiment Measurements with respect to $\Psi_{\text {RP }}$ and $\Psi_{\text {PP }}$

Summary
$\Psi_{\text {RP }}:$ reaction plane ; $\Psi_{\text {PP: }}$ participant plane

STAR
 Chiral Magnetic Effect (CME)

Kharzeev, et al. NPA 803, 227 (2008)
Voloshin, PRC 70, 057901 (2004)

$j_{V}=\frac{N_{c} e}{2 \pi^{2}} \mu_{A} B, \Longrightarrow$ electric charge separation along the B field
$>$ Gluon configuration with non-zero topological charge $\left(Q_{w}\right)$, generating electric current along B direction, leading to electric charge separation
$>$ Chiral symmetry, strong CP problem, matter-antimatter asymmetry etc.
$>$ Experimentally, $\gamma=\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \psi_{R P}\right)$ used to search for the CME

The STAR detector

charge \times momentum $(\mathrm{GeV} / \mathrm{c})$

$>$ Time Projection Chamber $\quad(\phi=0-2 \pi,|\eta|<1)$
Tracking - momentum Ionization energy loss - $\mathrm{dE} / \mathrm{dx}$ (particle identification)

$>$ Time Of Flight detector

 ($\phi=0-2 \pi,|\eta|<0.9$)Timing resolution < 100ps - PID improvement
IS2021 J. Zhao

$\Psi_{\mathrm{PP}} \& \Psi_{\mathrm{RP}}$ to resolve CME \& Bkg

H-J. Xu, et al, CPC 42 (2018) 084103, arXiv:1710.07265
B. Alver et al. (PHOBOS) , PRL 98, 242302 (2007).

$\Psi_{\mathrm{PP}} \& \Psi_{\mathrm{RP}}$ to resolve CME \& Bkg

$>\Psi_{\mathrm{PP}}$ maximizes flow,
$>\boldsymbol{\Psi}_{\mathrm{RP}}$ maximizes the magnetic field (B),
$\Delta \gamma$ w.r.t. TPC $\Psi_{\text {EP }}$ (proxy of $\Psi_{\text {PP }}$) and ZDC Ψ_{1} (proxy of $\Psi_{\text {RP }}$) contain different fractions of CME and Bkg

STAR ΔY_{112} w.r.t. $\Psi_{P P} \& \Psi_{R P}$ in $U+U \& A u+A u$

$$
\begin{aligned}
& v_{2}=\langle\cos (2 \phi-2 \psi)\rangle \\
& Y=\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}-2 \psi\right)\right\rangle \\
& \Delta Y=Y_{\text {os }}-Y_{s s}
\end{aligned}
$$

OS (opposite-sign) and SS (same-sign) represent the charge combinations of α and β particles
sub-event method, east ($-1<\eta<-0.075$) and west ($0.075<\eta<1$)
statistical uncertainties only

ΔY_{112} w.r.t.t. $\Psi_{\mathrm{PP}} \& \Psi_{\mathrm{RP}}$ in $\mathrm{U}+\mathrm{U} \& A u+A u$

$>$ Data indicate difference in v_{2} between central $U+U$ and $A u+A u$ $>$ "a" and "A" similar trend and magnitude, indicate bkg. dominant

star CME fraction by $\Psi_{\mathrm{PP}} \& \Psi_{\mathrm{RP}}$ in U+U \& Au+Au

$$
\begin{aligned}
& a=v_{2}\left\{\psi_{\mathrm{ZDC}}\right\} / \nu_{2}\left\{\psi_{\mathrm{TPC}}\right\} \\
& A=\Delta \gamma\left\{\psi_{\mathrm{ZDC}}\right\} / \Delta \gamma\left\{\psi_{\mathrm{TPC}}\right\}
\end{aligned}
$$

$f_{\mathrm{EP}}(\mathrm{CME})$
$=\operatorname{CME}\left\{\psi_{\mathrm{TPC}}\right\} / \Delta \gamma\left\{\psi_{\mathrm{TPC}}\right\}$
$=(A / a-1) /\left(1 / a^{2}-1\right)$

$>$ CME fractions are extracted with Δy using $\Psi_{\mathrm{PP}} / \Psi_{\mathrm{RP}}$ in $\mathrm{U}+\mathrm{U}$ and $\mathrm{Au}+\mathrm{Au}$: the combined result is ($8 \pm 4 \pm 8$)\%
$>$ Current systematic uncertainties assessed by track quality cuts and η gap

Summary

$>\Delta y$ with respect to $\Psi_{P P}$ and $\Psi_{R P}$ to isolate possible CME from Bkg.
> Current Au+Au 200 GeV and U+U 193 GeV results indicate that:

possible CME signal is ($8 \pm 4 \pm 8$)\% of the inclusive $\Delta \gamma$
Work in progress: studies to reduce systematic uncertainties. Shape difference in Au+Au \& U+U

STAR, PRL 115, 222301 (2015)

$+$
$A u+A u$
$>$ Event shape difference in U+U and Au+Au, may be sensitive to CME
$>\Psi_{\mathrm{PP}}$ and Ψ_{RP} difference might differ between U+U and Au+Au.

