

Study of Uranium nuclei deformation via flow and mean transverse momentum correlation at STAR

Chunjian Zhang (For the STAR Collaboration)

Stony Brook University, chun-jian.zhang@stonybrook.edu

Motivations

- * Datasets: Run11 Au+Au@200GeV; Run12 U+U@193GeV * Centrality is defined by the number of charged particles $N_{\rm ch}$ (| η |<0.5)
 - * $\langle p_T \rangle$, v_n and N_{ch} are measured within:
 - $0.2 < p_T < 2.0 \; {
 m GeV/c} \; \; {
 m and} \; \; 0.5 < p_T < 2.0 \; {
 m GeV/c} \; \ |n| < 1.0$

Pearson coefficient

* An anticorrelation is observed between v_2 and $\langle p_T\rangle$ in top 0.5% U+U collisions while not in Au+Au.

* v_3 and $\langle p_T \rangle$ correlations are positive and similar for Au+Au and U+U collisions.

* After adding the statistical fluctuations, TRENTo can reproduce data quantitatively

* Subevent methods suppress non-flow in peripheral collisions

* Subevent calculations indicate decrease of non-flow contributions in peripheral collisions.

Mean p_T fluctuations

ουυ N^{rec} (hpl<0.5)

N^{rec}_{ch} (hl<0.5)

N^{rec}_{ch} (ml<0.5)

* $\rho(v_n^2, [p_T])$ compared with IP-Glasma+MUSIC+UrQMD

* $ho(v_2^2,[p_T])$ has a sign-change behavior in U+U central collisions.

* IP-Glasma + Hydro shows the hierarchical β_2 dependence in $\rho(v_2^2, [p_T])$.

* IP-Glasma + Hydro quantifies the β_2 value around 0.28 with large uncertainty.

* ρ(v_n², [p_T]) compared with TRENTo initial condition model TRENTo: G. Giacolone. PRC102, 104901/2020). PRL124.202301/2020)

* TRENTo suggests this sign-change in the central collisions could be due to deformation effect.

* Features are same for $0.5 < p_T < 2 \text{ GeV/c}$ as $0.2 < p_T < 2 \text{ GeV/c}$.

* Main features are robust against pT selection

IP-Glasma+MUSIC+UrQMD: B. Schenke, C. Shen and P. Tribedy, PRC102, 044905(2020)

* AMPT also confirms the sign-change could be due to deformation effect

	Summary
nce could be due to deformation effect. ilso affects mid-central collisions. bes the trend qualitatively.	 We presented measurements from STAR that demonstrate a clear shape – flow transmutation. The slope of v₂ vs (p_T) are different between Au+Au and U+U due to the deformation. The sign-change behavior in Pearson coefficient p (v²₂, [p_T]) in central U+U collisions could be used to constrain quadrupole component β₂: Subevent methods could suppress nonflow contamination in peripheral collisions. Main features are robust against p₇ selection. Precise data-model comparison (IP-Glasma+Hydro, TRENTO, AMPT) could be helpful to constrain the
QMD Glasma + Hydro all predict the ismutation. dro describes the data qualitatively eds more statistics in future.	 initial conditions such as nuclear deformation parameters, shear/bulk viscosity and c. in EoS. IP-Glasma + Hydro model partially reproduces the data with Uranium deformation parameter β₂ around 0.28 with large uncertainty. TERNTo initial-state model shows an hierarchical β₂ dependence in U+U and prefers the β₂ value between 0.28 and 0.4. AMPT model also confirms the sign-change could due to the deformation and prefers the β₂ value between 0.28 and 0.4. Mean pr fluctuations (standard variance, standard skewness and intensive skewness) show a clear difference due to deformation frect.
an p _T fluctuation is also an important rmal equilibrium, EoS and collision	* TRENTo and IP-Glasma + Hydro predict the clear size – $\left(p_{T}\right)$ transmutation and describe the data qualitatively.
	* These measurements provide novel ways to constrain nuclear deformation in heavy-ion collisions.