

p+Au, d+Au and ³He+Au collisions at 200 GeV

Shengli Huang

Outline:

- Introductions and Motivations
- Two-particle correlations at mid-rapidity
- Model Comparison and Discussion
- Summary

Brook University

Initial Geometry in small system

Interplay between three possible sources:

1) Fluctuations in nucleon position

2) Fluctuations in nucleon position and its quark and gluon constituents

3) Fluctuation of overlap geometry along the beam direction

Nucleon vs. sub-nucleon fluctuation

	Nucleon Glauber	Sub-Nucleon Glauber	
	$arepsilon_2(arepsilon_3)$	$arepsilon_2(arepsilon_3)$	
0-5% pAu	0.23(0.16)	0.38(0.30)	
0-5% dAu	0.54(0.18)	0.51(0.31)	
0-5% $^3\mathrm{He}\mathrm{+Au}$	0.50(0.28)	0.52(0.35)	

Nucleon Glauber: J. L. Nagle, PRL 113, 112301 331 (2014). Sub-Nucleon: K. Welsh, J. Singer, and U. Heinz, PRC 94, 334 024919 (2016). Nucleon Fluctuations: $\epsilon_2^{p+Au} \ll \epsilon_2^{d+Au} \approx \epsilon_2^{^{3}He+Au}$ $\epsilon_3^{p+Au} \approx \epsilon_3^{d+Au} < \epsilon_3^{^{3}He+Au}$

Nucleon + Subnucleon Fluctuations:

 $\epsilon_2^{p+Au} < \epsilon_2^{d+Au} \approx \epsilon_2^{^{3}He+Au}$ $\epsilon_3^{p+Au} \approx \epsilon_3^{d+Au} \approx \epsilon_3^{^{3}He+Au}$

The eccentricity hierarchy is smeared by sub-nucleon fluctuation

Longitudinal Decorrelation

The longitudinal decorrelation from mid to forward rapidity complicates the inference of the true initial geometry

Decorrelation is stronger for asymmetric systems (pPb > PbPb) and higher order anisotropy coefficients (for $v_3 >$ for v_2)

Decorrelation poses challenges for all boost-invariant hydro model-to-data comparisons

Pre-Flow Effect

(super)SONIC: P. Romatschke Eur. Phys.J.C 75, 305 (2015)

Differences in STAR-PHENIX Measurement

STAR: Mid-mid rapidity correlation **PHENIX:** Mid-backward rapidity correlation

STAR:

- 1. $|\Delta \eta| > 1.0$ to suppress the near-side nonflow 2.Small longitudinal decorrelation is expected, boost invariant models can be directly compared
- 3. Four types of nonflow subtraction methods implemented
- 4.Centrlity:Two types of selections, activity in $|\eta| < 0.9 \text{ or } -5.0 < \eta < -3.3$

PHENIX:

1. $|\Delta \eta| > 2.75$ to suppress the near-side nonflow 2.Large longitudinal decorrelation is expected 3.Nonflow estimated using multiplicity scaling of $p+pv_n$ 4.Centrality: activity in $-3.9 < \eta < -3.1$

Shengli Huang IS 2023

Correlation Function and Away-side Nonflow Subtraction

STAR, Phys. Rev. Lett. 130, 242301

Correlation function in p+p indicates nonflow is dominated by the away-side jet-like correlation

Four nonflow subtraction methods have been employed using p+p as reference

- c₀ method: scaled with per trigger yield
- 2. Near-side method: scaled with nearside jet yield
- 3. c_1 method: scaled by v_1 from momentum conservation
- 4. Template Fit method: scaled with
 away-side jet 7

STAR differential v_n measurements for p/d/3He+Au

Non-flow subtraction will only decrease v₂ and increase v₃

Non-flow subtracted v₂ and v₃ show minimal method dependence

STAR, Phys. Rev. Lett. 130, 242301

Vn for Different Centrality Selection

(c₁ subtraction)

 Results agree well for both centrality definitions using activity from mid and backward rapidity regions

Shengli Huang IS 2023

Role of Pre-Flow

SONIC model , which incorporates initial geometry eccentricity from nucleon position but does not consider sub-nucleon fluctuations, under-predicts the observed v₃ in all systems.

	Nucleon Glauber	Sub-Nucleon Glauber	
	$arepsilon_2(arepsilon_3)$	$arepsilon_2(arepsilon_3)$	
0-5% pAu	0.23(0.16)	0.38(0.30)	
0-5% dAu	0.54(0.18)	0.51(0.31)	
0-5% ³ He+Au	0.50(0.28)	0.52(0.35)	

(super)SONIC: P. Romatschke Eur. Phys.J.C 75, 305 (2015)

Role of Pre-Flow

- SONIC model , which incorporates initial geometry eccentricity from nucleon position but does not consider sub-nucleon fluctuations, under-predicts the observed v₃ in all systems.
- SuperSONIC mode, which include initial geometry eccentricity from nucleon position and the "pre-flow" can provide better description of v₃

	Nucleon Glauber	Sub-Nucleon Glaube
	$arepsilon_2(arepsilon_3)$	$arepsilon_2(arepsilon_3)$
0-5% pAu	0.23(0.16)	0.38(0.30)
0-5% dAu	0.54(0.18)	0.51(0.31)
0-5% ³ He+Au	0.50(0.28)	0.52(0.35)

(super)SONIC: P. Romatschke Eur. Phys.J.C 75, 305 (2015)

The final state contributions are expected to be largely canceled out when comparing similar multiplicity events

Studying the ratios of flow will be helpful to understand the initial spatial geometry and the contribution from the preflow

 $V_2(HeAu) \approx v_2(dAu) > v_2(pAu)$ $V_3(HeAu) \approx v_3(dAu) \approx v_3(pAu)$

The final state contributions are expected to be largely canceled out when comparing similar multiplicity events

Studying the ratios of flow will be helpful to understand the initial spatial geometry and the contribution from the preflow

 $V_2(HeAu) \approx v_2(dAu) > v_2(pAu)$ $V_3(HeAu) \approx v_3(dAu) \approx v_3(pAu)$

Midrapidity v₃ *implies no difference in triangular fluid shape between systems*

The final state contributions are expected to be largely canceled out when comparing similar multiplicity events

Studying the ratios of flow will be helpful to understand the initial spatial geometry and the contribution from the preflow

 $V_2(HeAu) \approx v_2(dAu) > v_2(pAu)$ $V_3(HeAu) \approx v_3(dAu) \approx v_3(pAu)$

Two Base Lines: eccentricity ratios Eccentricity with nucleon fluctuation

STAR, Phys. Rev. Lett. 130, 242301

The final state contributions are expected to be largely canceled out when comparing similar multiplicity events

Studying the ratios of flow will be helpful to understand the initial spatial geometry and the contribution from the preflow

 $V_2(HeAu) \approx v_2(dAu) > v_2(pAu)$ $V_3(HeAu) \approx v_3(dAu) \approx v_3(pAu)$

Two Base Lines: eccentricity ratios
 Eccentricity with nucleon fluctuation
 Eccentricity with nucleon+sub-nucleon

The final state contributions are expected to be largely canceled out when comparing similar multiplicity events

Studying the ratios of flow will be helpful to understand the initial spatial geometry and the contribution from the preflow

 $V_2(HeAu) \approx v_2(dAu) > v_2(pAu)$ $V_3(HeAu) \approx v_3(dAu) \approx v_3(pAu)$

Two Base Lines: eccentricity ratios
 Eccentricity with nucleon fluctuation
 Eccentricity with nucleon+sub-nucleon

Sub-nucleon fluctuation?

Pre-flow?

STAR, Phys. Rev. Lett. 130, 242301

Role of longitudinal decorrelation: 3D-Glauber model

The STAR and PHENIX v_3 for p/d+Au, show similar p_T dependence

- ✓ But magnitudes differ by a large factor
 - ✓ System-independent STAR v₃
 - ✓ System-dependent PHENIX v₃

X. Zhao && C. Shen PRC.107.014904

Role of longitudinal decorrelation: 3D-Glauber+MUSIC

The STAR and PHENIX v_3 for p/d+Au, show similar p_T dependence

- ✓ But magnitudes differ by a large factor
 - ✓ System-independent STAR v₃
 - ✓ System-dependent PHENIX v₃

3D Glauber + MUISC indicates there are significant de-correlations in PHENIX v₃ measurements

Model underestimates STAR and PHENIX v₃ measurements in p+Au

X. Zhao && C. Shen PRC.107.014904

New d+Au Data 2021

100M MB and 100M HM(0-5% selected by EPD) triggered events have been taken by STAR in 2021

Improved acceptance: iTPC ($|\eta| < 1.5$) + EPD(2.1< $|\eta| < 5.1$)

Simultaneously measuring the mid-mid and mid-backward rapidity correlations

Further investigate the longitudinal decorrelation in small-sized system

O+O@RHIC 2021

- STAR has taken 600M MB and 200M HM O+O events in 2021
- ✓ Large rapidity coverage due to iTPC $|\eta|$ <1.5 and EPD(2.1< $|\eta|$ <5.0)
- ✓ Trigger on HM event at both middle and forward rapidity regions
- Different flow behaviors between symmetric and asymmetric collision systems
- Disentangle the impact of the subnucleon fluctuations from the nuclear shape

Summary

- ➤ The STAR experiment conducted measurements of v₂ and v₃ as a function of p_T in central p+Au, d+Au and ³He+Au collisions. The extracted flow signals were found to be consistent across four different non-flow subtraction methods.
- ➤ The observed v₃ is system independent, suggesting a significant influence of sub-nucleon gluon field fluctuations on the initial geometry of smallsized systems. Although, longitudinal decorrelation and pre-flow effects need to be further investigated
- ➢ In the future, the availability of new d+Au and O+O data will provide additional information for studying the sub-nucleon structure, pre-flow and longitudinal decorrelations.

Backup

SONIC Hydro.

SONIC: P. Romatschke *Eur. Phys.J.C* 75, 305 (2015)

On the other hand, the ratio $v_2(pAu)/v_2(dAu)$ may be affected by different viscous correction functions or other dynamical effects

Studying v_n in p/d/³He+Au collisions and their ratios can provide valuable insights into the initial spatial geometry and pre-equilibrium dynamics during the initial stage of the collision Shengli Huang IS 2023

HIJING pp vs. η Gap

Detail Comparisons to PHENIX

The STAR and PHENIX v₂ and v₃ for ³He+Au, show reasonable agreement

- The STAR and PHENIX measurements for v₂ are also in reasonable agreement for p/d+Au
 - Some difference(~25%) for p_T>1 GeV/c in d+Au and p_T<1 GeV/c in p+Au</p>
- The STAR and PHENIX v₃ for p/d+Au, show similar p_T dependence
 - ✓ But magnitudes differ by a factor of 3
 - ✓ System-independent STAR v₃
 - ✓ System-dependent PHENIX v₃

> Longitudinal decorrelation effect?

PHENIX: Nature Phys. 15, 214 (2019) STAR: 2210.11352

Shengli Huang IS 2023

Comparison to IP-Glasma

- IP-Glasma+Hydro includes sub-nucleonic gluon field fluctuations + initial momentum correlation + pre-flow.
- It is tuned to describe the data for large-sized systems and then extrapolated to small-sized systems
- It overpredicts v₂ but reproduces v₃. Larger ε₂ or strong pre-flow from IP-Glasma model ?
- STAR measurements provide useful constraints on model tuning in future

IP-Glasma+Hydro: Phys. Lett. B 803, 135322 (2020)

Model	a	b	с	d
	$arepsilon_2^a(arepsilon_3^a)$	$arepsilon_2^b(arepsilon_3^b)$	$arepsilon_2^c(arepsilon_3^c)$	$arepsilon_2^d(arepsilon_3^d)$
³ He+Au	0.50(0.28)	0.52(0.35)	0.53(0.38)	0.64(0.46)
$d{+}\mathrm{Au}$	0.54(0.18)	0.51(0.32)	0.53(0.36)	0.73(0.40)
p+Au	0.23(0.16)	0.34(0.27)	0.41(0.34)	0.50(0.32)

Isobar Vn

