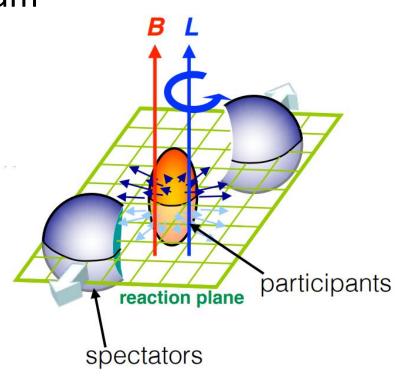


Global polarization of Ξ hyperons in Au+Au collisions in the STAR experiment

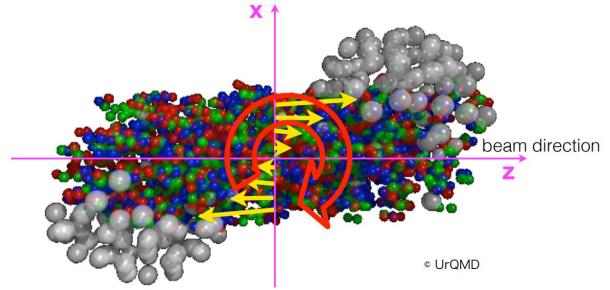
Outline:

- Introduction
- Global hyperon polarization
- Motivation
- The STAR experiment
- Hyperon polarization measurements
- Results
- Conclusions

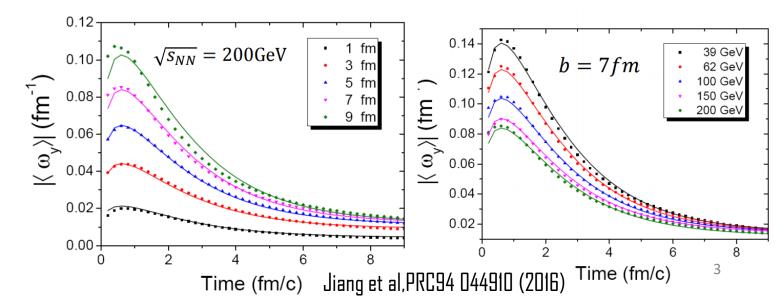
Egor Alpatov (for the STAR Collaboration)


National Research Nuclear University MEPhl

Introduction


- The Quark-Gluon Plasma (QGP) formed in non-central nucleus-nucleus collisions is associated with large angular momentum, that leads to <u>vorticity</u> in the medium
- Spin-orbit coupling aligns spin directions of produced particles along the direction of <u>vorticity</u>
 - > Z.-T. Liang and X.-N. Wang, PRL94, 102301 (2005)
 - ➤ S. A. Voloshin, arXiv:nucl-th/0410089
- Another possible source of particle polarization is magnetic field, created in non-central collisions in the initial stage
 - ➤ D. Kharzeev, L. McLerran, and H. Warringa, Nucl. Phys. A803, 227 (2008)
 - ➤ McLerran and Skokov, Nucl. Phys. A929, 184 (2014)

Vorticity


• In non-central Heavy-Ion Collisions the initial collective longitudinal flow velocity depends on the velocity gradient:

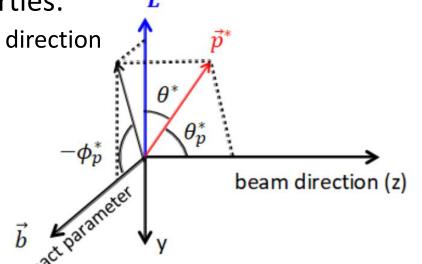
Becattini, Karpenko, Lisa, Upsal, Voloshin PRC95.054902 (2017)

$$P_{\Lambda} \simeq \frac{1}{2} \frac{\omega}{T} + \frac{\mu_{\Lambda} B}{T}$$

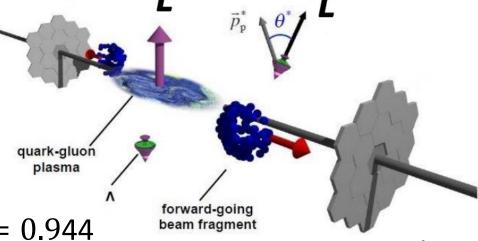
$$P_{\bar{\Lambda}} \simeq \frac{1}{2} \frac{\omega}{T} - \frac{\mu_{\Lambda} B}{T}$$

$$\omega_y = \frac{1}{2} (\nabla \times v)_y \approx -\frac{1}{2} \frac{dv_z}{dx}$$

How to measure global polarization?


- Hyperons are "self-analyzing" due to weak decay properties:
 - Daughter baryons are preferentially emitted along parent spin direction
- Daughter baryons of hyperons with polarization (\vec{P}) follows the distribution:

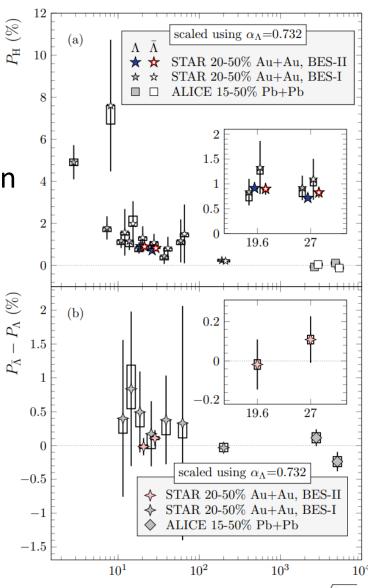
$$\frac{dN}{d\Omega^*} = \frac{1}{4\pi} \left(1 + \alpha_H |\overrightarrow{P}| \cdot \widehat{p_b^*} \right) = \frac{1}{4\pi} \left(1 + \alpha_H P \cos \theta^* \right)$$


- α_H decay parameter, unique for each hyperon species
- $\widehat{p_b^*}$ is the daughter baryon momentum in the parent frame
- Projection to the transverse plane can be measured:

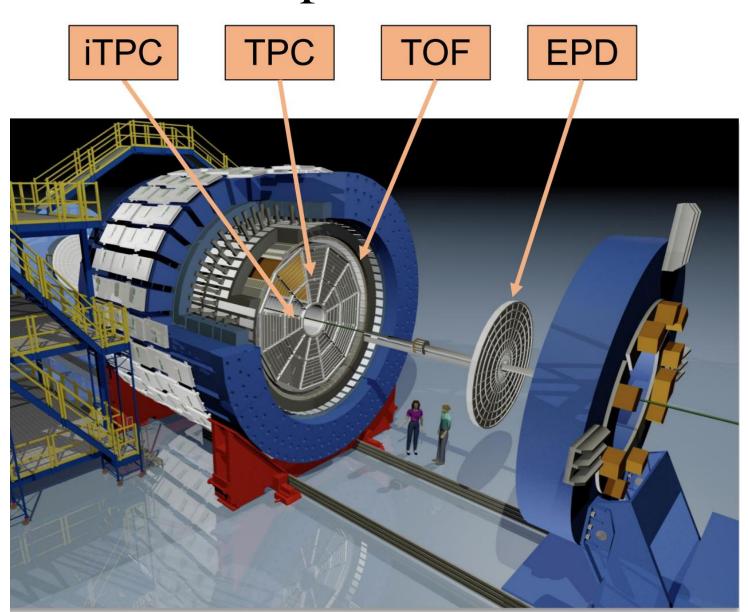
$$P_{H} = \frac{8}{\pi \alpha_{H}} \frac{\langle sin(\psi_{1} - \varphi_{p}^{*}) \rangle}{Res(\psi_{1})}$$

- ψ_1 is first-order event plane angle (proxy for reaction plane)
- ψ_1 and its resolution $Res(\psi_1)$ can be calculated with spectator's signal.
- Ξ global polarization could also be measured via its daughter Λ polarization with transfer factor $C_{\Xi\Lambda}=0.944$ Egar Apatov ISI-EPP-2023

STAR *Nature* **548**, 62–65 (2017)


Motivation

- Global polarization of Λ hyperons was measured for $\sqrt{s_{NN}}$ = 3-200 GeV at STAR
- P_H decreases with increasing collision energy
- Recent BES-II Λ global polarization studies shows no significant difference between Λ and $\overline{\Lambda}$ global polarization
- Theoretical calculations can quantitively explain the energy dependence of the Λ polarization, but many of them fail to explain differential measurements
- Nowadays there is a growing interest to measure the global polarization of other hyperons such as Ξ .
- Ξ and Ω hyperons global polarization was measured in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
- <u>E polarization may provide new input for global polarization and vorticity studies</u>


PRC 108, 014910 (2023)

The STAR experiment

Detectors with their η acceptance:

Hyperon reconstruction:

- Time Projection Chamber $|\eta| \in [-1, 1]$
- **iTPC** increases TPC acceptance to [-1.5, 1.5]
- Time-Of-Flight $|\eta| \in [-0.9, 0.9]$

Event plane angle measurement:

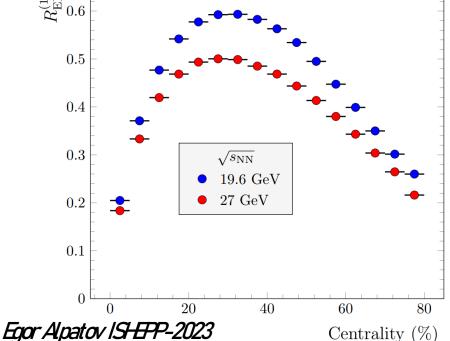
- Beam-Beam Counter
 |η| ∈ [3.3, 5.0]
- Event-Plane Detector $|\eta| \in [2.1, 5.1]$
- Bigger EPD acceptance and granularity improves event-plane resolution ~1.5 times compared to BBC in BES-I

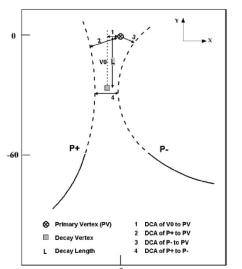
Experimental technique

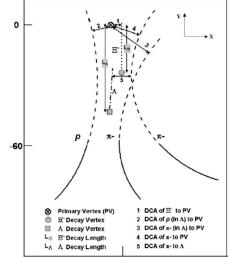
• Event plane Ψ_1 is determined by detectors at forward rapidity where directed flow is large

$$\Psi_1 = \tan^{-1}\left(\frac{\sum w_i \sin(\phi_i)}{\sum w_i \cos(\phi_i)}\right) \text{ , where } w_i \text{ is detector's tile ADC}$$

A. M. Poskanzer, S. A. Voloshin, PRC58.1671(1998)

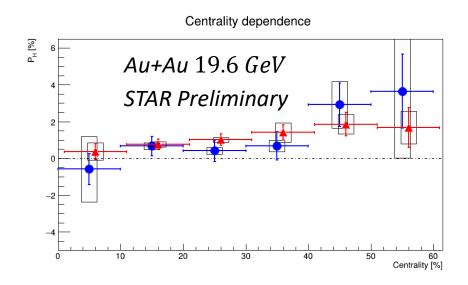

•
$$Res\left(\Psi_{1, \text{Full }\eta}\right) = \sqrt{2 < \cos(\Psi_{1, Forward \eta} - \Psi_{1, Backward \eta})} >$$

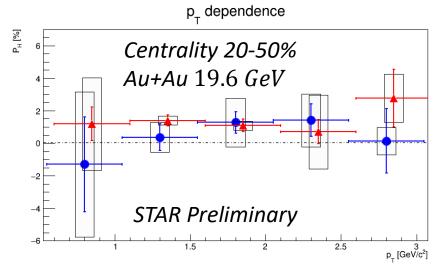

EPD was used to determine event-plane angle (BBC for systematics)

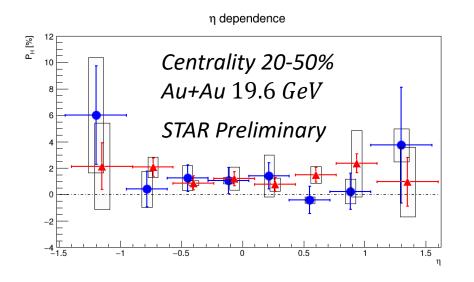

Zyzak, Maksym, Kisel, Ivan, Kulakov, Igor, & Vassiliev, Iourii (2013). The KFParticle package for the fast particle reconstruction in ALICE and CBM

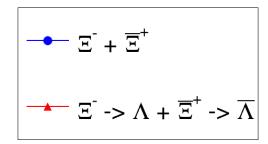
Hyperon reconstruction performed via decay topology with KFParticle tecnique

- Λ daughters identified via TPC and TOF
- Ξ were reconstructed via $\Xi \rightarrow \Lambda + \pi$

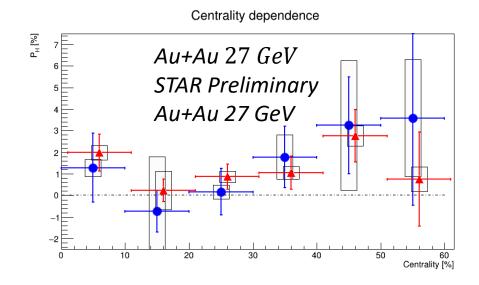


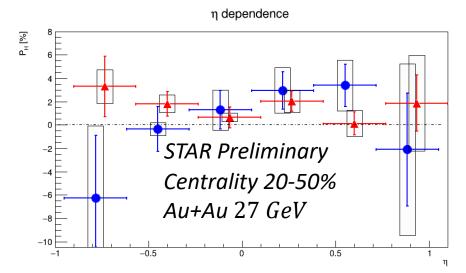


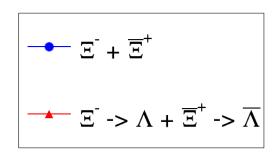



$$P_{H} = rac{8}{\pi lpha_{H}} rac{\langle sin(\psi_{1} - \varphi_{p}^{*})
angle}{Res(\psi_{1})}$$

Ξ global polarization: $\sqrt{s_{NN}}$ =19.6 GeV



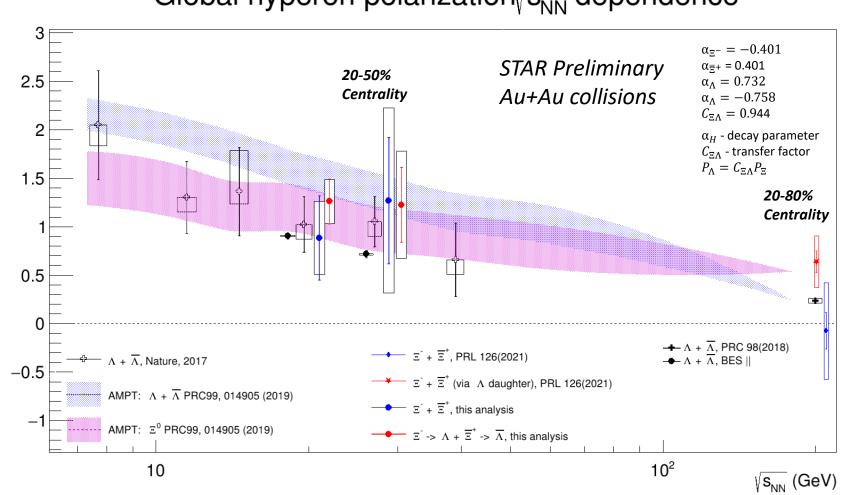



- Direct polarization measurements are consistent with measurements via daughter decays
- Polarization increases with centrality
- No obvious pseudorapidity or p_T dependence

Ξ global polarization: $\sqrt{s_{NN}}$ =27 GeV

- Direct polarization measurements are consistent with measurements via daughter decays
- Polarization increases with centrality
- Weak pseudorapidity or p_T dependence if any

Ξ global polarization results



Global hyperon polarization s_{NN} dependence

- Observed positive

 E global polarization
- Experimental results for
 global polarization
 consistent with each other with
 given large uncertainties
 at different collision energies
- Both **E** global polarization measurement methods are consistent within uncertainties
- Ξ and inclusive Λ global polarization are consistent within statistical uncertainties
- Global polarization of E hyperons consistent with AMPT predictions

Conclusions

- We presented $\Xi + \overline{\Xi}$ global polarization measurements in Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 & 27 GeV, which helps to understand QCD spin dynamics and vorticity of QGP medium
 - This information can be used in theoretical development
- $\Xi+\overline{\Xi}$ global polarization is comparable with $\Lambda+\overline{\Lambda}$ global polarization within uncertainties, indicating a global nature of polarization

Thank you for your attention!