Supported in part by

Identical Pion Interferometry from Au+Au Collisions at $\sqrt{s_{NN}}$ = 3.2, 3.5, 3.9 GeV in the STAR Experiment at RHIC

Vinh Luong (for the STAR Collaboration) Joint Institute for Nuclear Research

XXV International Baldin Seminar on High Energy Physics Problems Relativistic Nuclear Physics & Quantum Chromodynamics September 18 - 23, 2023, Dubna, Russia

Outline

- The STAR experiment and the Fixed-Target (FXT) Program at RHIC
- Correlation femtoscopy
- collisions at $\sqrt{s_{NN}} = 3.2, 3.5, 3.9$ GeV:
 - Pair transverse momentum $(k_{\rm T})$ dependence
 - Collision energy dependence
 - Pair rapidity (y_{pair}) dependence

• Extracted femtoscopic parameters from pion correlation functions in Au+Au

Vinh Luong | XXV Baldin ISHEPP

Motivation

STAR 🖈

- The correlation femtoscopy is a useful tool to study the spatial and temporal charateristics of systems of femtometer scale
- $R^{2}_{out} R^{2}_{side}$ sensitive to emission duration has a peculiar energy dependence
- Large uncertainties of existing measurements in the high net-baryon density region

The STAR detector & Fixed-Target Program

Baryon Chemical Potential μ_{B}

Gold target was installed on the west end of STAR TPC

• Fixed-target (FXT) program gives access to energies $\sqrt{s_{\rm NN}}$ < 7.7 GeV at RHIC

Pion identification

• 0.15 GeV/c: TPC identification

• 0.55 GeV/c: TPC+TOF identification

- Good particle identification capability based on TPC and TOF

Measuring two-particle correlation function

• Experimentally, correlation function: $C(\overrightarrow{q}) = A(\overrightarrow{q})/B(\overrightarrow{q})$

• Relative momentum $\overrightarrow{q} = \overrightarrow{p_1} - \overrightarrow{p_2}$

• $A(\overrightarrow{q})$ – measured distribution of \overrightarrow{q} within the same event, containing quantum statistic correlation and final state interactions

• $B(\overrightarrow{q})$ – background distribution of \overrightarrow{q} of two tracks from different events, where physical correlations are absent

• Projection of \overrightarrow{q} onto Bertsch-Pratt longitudinal co-moving system (LCMS):

• $q_{\rm out}$ — along pair transverse momentum ($k_{\rm T}$)

- q_{long} along beam direction
- $q_{\rm side}$ perpendicular to the other two axes

S. Pratt, PRD 33, 1314 (1986) G. Bertsch, M. Gong, M. Tohyama, PRC 37, 1896 (1988)

Vinh Luong | XXV Baldin ISHEPP

Fitting the correlation function

- Bowler-Sinyukov procedure: $C(\vec{q}) = N | (1 N) | ($ $G(\vec{q}) = \exp(-q_0^2 R_0^2 - q_s^2 R_s^2 - q_l^2 R_l^2 - 2q_0^2 q_l^2)$
 - > N normalization factor, λ correlation strength factor, K_{Coul} Coulomb correction
 - $R_{\rm out} \sim$ geometrical size + emission duration
 - $R_{\rm side} \sim$ geometrical size
 - $R_{\rm long} \sim$ source lifetime
 - $R_{out-long}^2$ ~ tilt of the CF in the (q_{out} , q_{long}) plane, depending on the degree of asymmetry of the rapidity acceptance w.r.t. midrapidity
 - Fit using Log-likelihood method:

$$\chi^2 = -2\left[A\ln\left(\frac{C(A+B)}{A(C+1)}\right) + B\ln\left(\frac{A+B}{B(C+1)}\right)\right], \ C = A/B$$

M.G. Bowler, PLB 270, 69 (1991) Yu.M. Sinyukov, et. al., PLB 432, 248 (1998) E802, PRC 66, 054906 (2002)

$$-\lambda) + \lambda K_{\text{Coul}}(q_{\text{inv}})(1 + G(\overrightarrow{q}))],$$

$$q_l^2 R_{ol}^2)$$

Measured identical pion correlation function

- Slight difference (<5%) between measured correlation functions of positively and negatively charged pions for $0.15 < k_{\rm T} < 0.25 \, {\rm GeV}/c$ in 0-10% most central collisions
 - May be attributed to residual electric charge

$k_{\rm T}$ -dependence of femtoscopic parameters

- λ increases with increasing $k_{\rm T}$ • Femtoscopic radii: R_{out} , R_{side} , $R_{\rm long}$
 - decrease with increasing $k_{\rm T}$ due to transverse flow
 - decrease from central to peripheral collisions due to geometry of overlapping region
- Non-zero $R^{2}_{out-long}$ due to asymmetric acceptance w.r.t. midrapidity

Collision energy dependence of parameters

 Extracted parameters and $R^{2}_{out}-R^{2}_{side}$, R_{out}/R_{side} ratios at $\sqrt{s_{\rm NN}} = 3.0-3.9 \,{\rm GeV}$ follow the trend of HADES and STAR's collider mode results, rather than E895 results

Rapidity differential analysis

- Pion pair acceptance is divided into 6 windows:
 - > Pair transverse momentum $k_{\rm T}$: [0.15, 0.6] GeV/c
 - Pair rapidity bin width $\Delta y_{pair} = 0.2$
- Rapidity coverage in center-of-mass system:

$\overline{\mathbf{W}}$, GeV	3.0	3.2	3.5	3.9
$_{ m r}~({ m CMS})$	[-0.8, 0.2]	[-1, 0]	[-1, 0]	[-1.2, -0.2]

• Expectations for the pair rapidity dependence at low energies: $R_{out-long}^{2}(y_{pair}^{CMS}): \text{ sign change w.r.t midrapidity } (y_{pair}^{CMS} = 0)$ • $R_{\text{long}}(y_{\text{pair}}^{\text{CMS}})$: parabolic dependence ▶ $R_{side}(y_{pair}^{CMS})$: decreases with increasing $|y_{pair}^{CMS}| \rightarrow$ boostinvariance breaking

Rapidity dependence of femtoscopic parameters

STAR 🖈

- The difference of $R_{\rm side}$ and R_{long} between positive and negative pion is observed
- $R_{\rm side}$ decreases when moving away from midrapidity
 - Hint on boost-invariance breaking
- $|R^{2}_{out-long}|$ is larger for larger CMS pair

Summary

- 10-30%, 30-50% centrality classes at $\sqrt{s_{NN}}$ = 3.2, 3.5, 3.9 GeV
- residual electric charge
- due to geometry of overlapping region
- ratios favour the trend of HADES and STAR's collider results
- on boost-invariance breaking

We reported two-pion femtoscopy measurements in Au+Au collisions for 0-10%,

Difference between CF($\pi^+\pi^+$) and CF($\pi^-\pi^-$) is observed, which may be attributed to

• k_{T} -dependence: R_{out} , R_{side} , R_{long} decrease with increasing k_{T} due to transverse flow **Centrality dependence:** R_{out} , R_{side} , R_{long} decrease from central to peripheral collisions

Energy dependence: extracted femtoscopic parameters and $R^{2}_{out}-R^{2}_{side}$, R_{out}/R_{side}

 y_{pair} -dependence: R_{side} decreases when moving away from midrapidity giving a hint

Back-up

Slides from Richard Lednicky (1)

Longitudinal boost-invariant expansion

Sources (fluid elements) of lifetime τ are produced at t=z=0 in NN CMS, move in longitudinal z-direction uniformly in rapidity η and decay according to thermal law exp(-E*/T): $t = \tau \cosh(\eta)$ $z = \tau \sinh(\eta)$ LCMS $t = \tau \cosh(\eta^L)$ $z = \tau \sinh(\eta^L)$ $E = m_t \cosh(y) p_z = m_t \sinh(y) \rightarrow E = m_t$ $\mathbf{p}_z = \mathbf{0}$ $Q \rightarrow 0$, so LCMS source rapidity $\eta^{L} \approx \eta - y$ $\exp(-E^*/T) = \exp[-m_t \cosh(-\eta^L)/T] \approx \exp(-m_t/T) \exp[-\eta^{L^2/2}(T/m_t)]$ & a wide η "plateau" $\Rightarrow \langle \eta^L \rangle \approx 0, \langle \eta^{L2} \rangle \approx T/m_t$ LCMS radii: $\mathbf{R}_{\mathbf{z}}^{2} = \langle (\mathbf{z} - \langle \mathbf{z} \rangle)^{2} \rangle \equiv \langle \mathbf{z}^{2} \rangle \ \mathbf{R}_{\mathbf{y}}^{2} = \langle \mathbf{y}^{2} \rangle$ $v_t = p_t/m_t$

 $\mathbf{R}_{z}^{2} = \langle [\tau \sinh(\eta^{L})]^{2} \rangle - \langle \tau \sinh(\eta^{L}) \rangle^{2} \approx \tau_{0}^{2} T/m_{t} \quad \mathbf{R}_{xz}^{2} \approx 0$ $\mathbf{R}_{\mathbf{x}}^{2} = \langle \mathbf{x}^{2} \rangle - 2\mathbf{v}_{t} \langle \mathbf{x}^{2} \mathbf{t}^{2} \rangle + \mathbf{v}_{t}^{2} \langle \mathbf{t}^{2} \rangle \qquad \langle \mathbf{t}^{2} \rangle \approx (\Delta \tau)^{2} (1 + T/m_{t})$ $\tau_0^2 \equiv \langle \tau^2 \rangle$ $=\langle \tau \rangle^2 + (\Delta \tau)^2$

 $R_{\tau} \rightarrow \tau_0 = evolution time$

R. Lednicky, International School "Relativistic Heavy Ion Collisions, Cosmology and Dark Matter, Cancer Therapy", Oslo, May 2017

$$R_x^2 = \langle (x' - v_t t')^2 \rangle R_{xz}^2 = \langle (x' - v_t t') z' \rangle$$

 $R_{\tau} \rightarrow \Delta \tau = \text{emission duration}$ if $\langle x't' \rangle = 0 \& \langle x'^2 \rangle = \langle y'^2 \rangle$

Slides from Richard Lednicky (2)

Transverse expansion

Thermal law exp(-E*/T) & gaussian tr. density profile $exp(-r^2/2r_0^2)$ & linear tr. radial flow rapidity profile $\vec{\rho}(\vec{r}) = \rho_0 \vec{r}/r_0$ LCMS: $x = r \cos \phi$ (out), $y = r \sin \phi$ (side), $z = \tau \sinh(\eta^{L})$ (long) LCMS tr. velocity (nonrel. ρ , v^* , η^L): $\vec{v_t} \approx \vec{\rho} + \vec{v}^* + \eta^L \hat{z}$ $v^* =$ velocity (thermal) in SRF, $v^{*2} \approx \eta^{L2} + \rho^2 + v_t^2 - 2\rho v_t \cos \phi$ $E^* = m_t [\cosh \rho \cosh(\eta^L) - \sinh \rho v_t x/r] \approx m_t (1 + v^{*2}/2)$

Emiss. f-n dG(p,x)/dnd²r ~ exp(-E*/T) exp(-r²/2r₀²) $\approx \exp\{-m_t/T - [\eta^{L2} + (\rho_0 r/r_0)^2 - 2v_t(\rho_0 r/r_0)]m_t/2T - r^2/2r_0^2\}$

> $\Rightarrow \langle \mathbf{y} \rangle = \mathbf{0} \quad \langle \mathbf{x} \rangle = \mathbf{r}_0 \mathbf{v}_t \, \mathbf{\rho}_0 \,/ \left[\mathbf{\rho}_0^2 + \mathbf{T} / \mathbf{m}_t \right]$ $\mathbf{R}_{\mathbf{v}}^{2} = \langle \mathbf{y}^{2} \rangle = \langle \mathbf{x}^{2} \rangle = \mathbf{r}_{0}^{2} / \left[1 + \rho_{0}^{2} \mathbf{m}_{t} / T \right]$

 $\mathbf{X}^{2} = \mathbf{X} - \langle \mathbf{X} \rangle$

Note: for a box-like profile $(r < R) \rightarrow \langle x'^2 \rangle < \langle y'^2 \rangle$

Slides from Richard Lednicky (3)

Lowing energy \rightarrow narrowing rapidity "plateau" \Rightarrow NN CMS rapidity (y) dependence of LCMS radii in NN CMS: const $d\eta \rightarrow \exp(-\eta^2/2\sigma^2) d\eta$ $\langle \eta^{L2} \rangle \approx (T/m_t) \longrightarrow \langle \eta^{L2} \rangle \approx (T/m_t) / [1+T/(m_t \sigma^2)]$ $+ y^2 / [1 + m_t \sigma^2 / T]^2$ $\rightarrow \langle \eta^{L} \rangle \approx -y / [1 + m_{t} \sigma^{2} / T]$ $\langle \eta^{\rm L} \rangle \approx 0$ $R_{z}^{2} \approx \tau_{0}^{2}(T/m_{t}) \rightarrow \tau_{0}^{2}\{(T/m_{t}) / [1+T/(m_{t}\sigma^{2})]$ + $y^2[(\Delta \tau / \tau_0) / (1 + m_t \sigma^2 / T)]^2$ $\langle t^{2} \rangle \approx (\Delta \tau)^{2} [1 + (T/m_{t})] \rightarrow (\Delta \tau)^{2} [1 + (T/m_{t}) / [1 + T/(m_{t} \sigma^{2})]$ $+ y^2 / [1 + m_t \sigma^2 / T]^2]$ $R_{xz}^2 \approx 0$ $\rightarrow -v_t \langle \eta^L \rangle \{ (\Delta \tau)^2 [(1 + \langle \eta^{L^2} \rangle / 2)] \}$ $+ \tau_0^2(T/m_t) / [1+T/(m_t \sigma^2)]$ With the increasing energy the "plateau" width σ increases, recovering the infinite plateau result: $\langle \eta^{L2} \rangle \approx (T/m_t), \langle \eta^L \rangle \approx 0$ Other parameters τ_0 , $\Delta \tau$, T, r_0 , ρ_0 also increase with energy