

Dynamical higher cumulant ratios of net and total proton at STAR

Zhiming Li (for the STAR Collaboration)

Institute of Particle Physics Central China Normal University, Wuhan, China

Jan Kochanowski University 16-21 September 2012

Motivation

STAR detector and data sample

- Results and discussions
- ➤ Summary

Motivation

• At $\mu_B = 0$, lattice QCD predict a crossover transition.

Y. Aoki et al., Nature 443, 675 (2006).

• QCD-based models indicate a first-order phase transition at large μ_B . S. Ejiri et al., Phy. Rev. D 78, 074507 (2008).

◆ QCD critical point (QCP): The end point of the first-order phase transition boundary.

M. Stephanov, Prog. Theor. Phys. Suppl. 153, 139 (2004). Z. Fodor et al., J. High Energy Phys. 050 (2004).

Experimental exploring:

RHIC Beam Energy Scan Program to search for the signatures of the QCP.

M. Aggarwal et al. (STAR Coll.), arXiv: 1007.2613.

Sensitive observables of critical fluctuations: Higher cumulants of baryon distribution

Standard deviation: $\sigma = \sqrt{\langle (N - \langle N \rangle)^2 \rangle}$

Kurtosis:

$$\kappa = \frac{\left\langle \left(N - \left\langle N \right\rangle \right)^4 \right\rangle}{\sigma^4} - 3$$

M. Stephanov, Phys. Rev. Lett. 102, 032301 (2009). C. Athanasiou et al. Phys. Rev. D 82, 074008 (2010).

- *N*: the net or total proton number in an event
- $\langle \cdots \rangle$: the average over the event sample

Dynamical cumulant ratios:

Dynamical kurtosis = measured kurtosis – Poisson statistical part

Lizhu Chen, et al., J. Phys. G: Nucl. Part. Phys. 38, 115004 (2011). M. Stephanov, arXiv: 1104.1627; Phys. Rev. Lett. 107, 052301(2011). C. Athanasiou, K. Rajagopal, and M. Stephanov, arXiv:1006.4636.

Poisson statistical parts:

• For net-proton, the ratios of Skellam distribution:

$$\kappa_{stat} = \frac{1}{\left\langle N_p \right\rangle + \left\langle N_{\overline{p}} \right\rangle},$$

• For total-proton, the ratios of Poisson distribution:

$$\kappa_{stat} = \frac{1}{\left\langle N_p \right\rangle + \left\langle N_{\overline{p}} \right\rangle}$$

By describing fluctuations of the order parameter field σ near the critical point, the calculations of the Sigma model predicts that:

M. Stephanov, Phys. Rev. Lett. 107, 052301 (2011).M. Stephanov, Phys. Rev. Lett. 102, 032301 (2009).

• Dynamical kurtosis is universally negative when the critical point is approached from the crossover side of the phase separation line.

critical contribution of the cumulant in the σ field

$$\langle (\delta N)^4 \rangle_c = \langle N \rangle + \langle \sigma_V^4 \rangle_c \left(\frac{gd}{T} \int_p \frac{n_p}{\gamma_p} \right)^4 + \cdots$$

measured cumulant Poisson contribution

• The negative kurtosis should be firstly observed in more peripheral collisions, and/or sign change at low incident energy.

$$t = \frac{T - T_c}{T_c}$$
 is the reduced temperature

STAR detector

Loss (dE/dx).

Au+Au collisions from 7.7 to 200 GeV at RHIC/BES of year 2010 and 2011

- Particle Identification with Time Projection Chamber: Protons/antiprotons are identified by ionization energy loss measured in |y|<0.5, 0.4<p_T<0.8 GeV/c.
 - Centrality definition:
 - Use the multiplicity in $|\eta| < 0.5$, but excluding
 - the protons/antiprotons to avoid auto-correlations.
- Statistical error estimation:
 - Delta theorem method
 - X. Luo, J. Phys. G 39, 025008 (2012) [arXiv: 1109.0593].

Used statistics

$\sqrt{S_{_{NN}}}$ (GeV)	No. of Events (0-80%)
7.7	~2M
11.5	$\sim 7M$
19.6	~15M
27	~30M
39	~87M
62.4	~47M
200	~242M

EXAR Results and discussions: Dynamical kurtosis of net-proton

- Below 19.6 GeV, the dynamical kurtosis is positive in peripheral collisions, and increase towards more peripheral collisions.
- ➢ Above 19.6 GeV, the dynamical kurtosis turns to be negative in peripheral collisions.

M. Stephanov, Phys. Rev. Lett. 107, 052301 (2011).

STAR Results and discussions: Dynamical kurtosis of total-proton

- > We observe a positive dynamical kurtosis for peripheral collisions at all energies.
- In central collisions, the dynamical kurtosis is around zero at all incident energies.
- ▶ In contrary to net-proton we do NOT observe a sign change for total-proton.

EXAR Results and discussions: Dynamical kurtosis of AMPT model

- > The dynamical kurtosis is positive in non-central collisions at all incident energies.
- No sign change is observed for two settings of the AMPT model.

- In peripheral collisions, the sign of dynamical kurtosis of netproton changes from negative to positive when incident energy decreases.
- ➢ In the contrary, the sign of dynamical kurtosis of total-proton in peripheral collisions keeps positive at all incident energies.
- From AMPT model calculations where no critical behavior is included, the dynamic kurtosis for net-proton is found to be positive in non-central collisions for all energies.