$\Lambda(\bar{\Lambda})$ Hyperons Polarization in $\mathrm{Au}+\mathrm{Au}$ collisions at RHIC

Biao Tu

(for the STAR Collaboration)
Central China Normal University
$\&$ BNL
ISMD2018

3-7 Sept. Singapore

Introduction

$>$ Initial angular momentum $|L| \sim 10^{3} \hbar$ in non-central heavy-ion collisions.
> Baryon stopping may transfer this angular momentum, in part, to the fireball.
$>$ Due to the vorticity and spin-orbit coupling, spin of Λ may align with L.
> Polarization is a sensitive probe to vortical structure of QGP and fluid properties.

Λ polarization observable

The global polarization of Λ hyperons can be determined from the angular distribution of Λ decay products relative to the system orbital momentum L

$$
\frac{d N}{d\left(\cos \theta^{*}\right)}=\frac{1}{2}\left(1+\alpha_{H}\left|\vec{P}_{H}\right| \cos \theta^{*}\right)
$$

- Daughter proton preferentially points into the direction of Λ spin.
- θ^{*} is the angle between the system orbital momentum L and the momentum of the daughter proton in the Λ rest frame.
- $\quad \phi_{\mathrm{p}}^{*}$ is the ϕ of daughter proton in Λ rest frame.
- Ψ is the 1st-order event plane reconstructed by ZDC-SMD in this analysis.
- α_{H} is the Λ decay parameter ($\alpha_{\Lambda}=-\alpha_{\bar{\Lambda}}=0.642 \pm 0.013$).

The STAR Detector

Λ reconstruction

$>$ Calculate the invariant mass of $\left(p, \pi^{-}\right)$and $\left(\bar{p}, \pi^{+}\right)$pairs.
> Decay topological cuts to reduce combinatorial background.

star First observation of Λ global polarization

STAR Nature 548, 62 (2017)

> Finite global polarization is observed at low energies.
> Most vortical fluid produced at RHIC.
$>\mathrm{P}_{\mathrm{H}}$ for $\bar{\Lambda}$ is systematically larger than P_{H} for Λ.

- Implying a contribution from B-filed.

Global polarization at 200 GeV

STAR PRC 98, 014910 (2018)

$>$ Finite signal is observed at $\sqrt{s_{N N}}=$ 200 GeV .

$$
\begin{aligned}
& P_{H}(\Lambda)=0.277 \pm 0.044 \text { (stat.) } \pm_{0.049}^{0.039} \text { (sys.) } \% \\
& P_{H}(\bar{\Lambda})=0.240 \pm 0.045 \text { (stat.) } \pm_{0.045}^{0.062} \text { (sys.) } \%
\end{aligned}
$$

$>$ No significant difference between Λ and $\bar{\Lambda}$ at $\sqrt{s_{N N}}=200 \mathrm{GeV}$.
$>$ Following the trend of BES data and close to model predictions in all energies.

- UrQMD+VHLLE: L. Karpenko and F. Becattini, EPJC (2017) 77:213
- AMPT: H. Li et al., PRC 96,054908(2017)

Centrality dependence

> Polarization increase from central to peripheral collisions. Qualitatively consistent with the AMPT calculation.
$>$ Not clear if there is a saturation or decrease in very peripheral collisions.

p_{T} and η dependence

W. T. Deng and X. G. Huang

STAR PRC 98, 014910 (2018) PRC 93, 064907 (2016)

L. Karpenko and F. Becattini EPJC (2017) 77:213
$>$ No significant p_{T} dependence as expected from the initial angular momentum of the system.
$>$ No significant η dependence.

- A smaller shear flow structure at midrapidity than at
 forward (backward) rapidity due to baryon transparency at higher energies.

STAR Azimuthal angle dependence (Hydro calculation)

F. Becattini et al,

PRC93, 069901(E)(2016) PRC88, 034905 (2013)
L. Karpenko and F. Becattini, EPJC(2017) 77:213

Hui Li et al,
NPA 967 (2017) 772-775

$$
\Pi_{0}=\Pi-\frac{\vec{p}}{E(E+m)} \Pi \cdot \vec{p}
$$

> Hydrodynamic calculations predict a larger polarization in out-of-plane than in in-plane.

Azimuthal angle dependence (raw signal)

$>$ Lager polarization in the in-plane than it in out-of-plane without resolution correction.
$>$ The measured event plane is different from reaction plane, both $\left(\Psi-\phi_{p}^{*}\right)$ and $\left(\phi_{\Lambda}-\Psi\right)$ are affected.
> The smearing of reaction plane not only reduces the observed overall polarization, but also makes the observed azimuthal dependence smaller.

Resolution Correction (trace how it happens)

Define $M_{i j}$ as the particle yield from bin i before smearing and observed in bin j after smearing.

$$
M_{i j}=\sum_{k} m_{i j}^{k}
$$

Where $m_{i j}^{k}$ is the same but for $k^{t h}$ event.

Resolution Correction (trace how it happens)

$>$ For particles that stay in the vicinity bins after smearing, their events experience less EP perturbation than those that end further from the original bin. Thus, the EP resolution correction should be applied differently for different bins.
$>$ Define particle level resolution, $r_{i j}$, which takes care of particles that are from bin i before smearing and observed in bin j ,

$$
\mathrm{r}_{\mathrm{ij}}=\frac{\sum_{k}\left(m_{i j}^{k} * w_{i j} * \cos \left(\Psi_{\mathrm{obs}}^{k}-\Psi_{R P}\right)\right)}{M_{i j}}=\frac{\sum_{k}\left(m_{i j}^{k} * w_{i j} * \cos (\Delta \Psi)\right)}{M_{i j}}
$$

where $w_{i j}=\frac{\left\langle\sum_{j} m_{i j}\right\rangle}{\sum_{j} m_{i j}^{k}}$, and $\langle\cdots\rangle$ denotes the average over events.

Resolution Correction (method)

A correction method was applied:

$$
P_{H}^{\text {obs }}=A \times P_{H}^{\text {real }} \quad P_{H}^{\text {real }}=A^{-1} \times P_{H}^{\text {obs }}
$$

The matrix A can be define as

$$
\left[\begin{array}{c}
P_{H, 1}^{\mathrm{obs}} \\
P_{H, 2}^{o b s} \\
\vdots \\
P_{H, n}^{o b s}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{21} & & a_{1 n} \\
a_{12} & a_{22} & \cdots & a_{2 n} \\
\vdots & & \ddots & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
P_{H, 1}^{r e a l} \\
P_{H, 2}^{r e a l} \\
\vdots \\
P_{H, n}^{r e a l}
\end{array}\right]
$$

Matrix elements defined as

$$
a_{i j}=\frac{M_{i j}}{\sum_{i} M_{i j}} * r_{i j}
$$

Here $M_{i j}$ is particle yield, $r_{i j}$ is particle level resolution.
A.H. Tang, B. Tu and C.S. Zhou, arxiv:1803:05777

Azimuthal angle dependence

Note: Resolution correction is applied.
Here, Ψ is ZDC-SMD 1st-order event plane
The band is the systematical errors
$>$ An azimuthal angle dependence is observed. Larger polarization in inplane than in out-of-plane.
> Opposite trend to the hydrodynamic calculation.

- F. Becattini et al, PRC93, 069901(E)(2016) PRC88, 034905 (2013)
L. Karpenko and F. Becattini, EPJC (2017) 77:213
- Hui Li et al, NPA 967 (2017) 772-775

Consistent with below simple picture. Vorticity, maximum in the reaction plane, may not propagate efficiently from in to out of reaction plane due to the low viscosity of the system. This may lead to a larger in-plane than out-of-plane polarization for both Λ and $\bar{\Lambda}$.

Polarization along beam direction
S. Voloshin, EPJ Web Conf. 171, 07002 (2018)

Stronger flow in in-plane than in out-ofplane could make local polarization along beam axis!

$$
\left|\vec{P}_{Z}\right|=\frac{3\left\langle\cos \theta_{P}^{*}\right\rangle}{\alpha_{H}}
$$

(with the perfect detector)

sTAR \quad Polarization along beam direction

Note: Effect of Ψ_{2} resolution is not corrected here. Here Ψ_{2} is TPC 2nd order event plane.

$>$ Sine structure as expected from the elliptic flow.
$>$ Different trend to the theoretical calculations

- Hydro model: F. Becattini and L. Karpenko , PRL. 120.012302(2018)
- AMPT model : X. Xia, H. Li, Z. Tang, Q. Wang, PRC 98, 024905
Based on Blast-Wave model, the sign of $<\cos \theta_{P}^{*}>$ may depend on the relation between the magnitudes of spatial and flow anisotropy
$\omega_{z}=\frac{1}{2}(\nabla \times v)_{Z} \approx\left(\frac{\rho_{t, n \max }}{R}\right) \sin \left(n \phi_{s}\right)\left[b_{n}-a_{n}\right]$ a_{n} is spatial, b_{n} is flow

sTAB Centrality dependence of P_{z} modulation

$>$ Significant centrality dependence as in the elliptic flow.
$>$ First observation of Λ global polarization in Au+Au collisions at $\sqrt{S_{N N}}=7.7-39 \mathrm{GeV}$:

- Most vortical fluid produced at RHIC.
- The difference between Λ and $\bar{\Lambda}$ implies a contribution from B-field.
$>$ Finite Λ polarization observed in Au+Au collisions at $\sqrt{S_{N N}}=200$ GeV:
- Larger polarization in peripheral collisions.
- No significant p_{T} and η dependence.
- Larger polarization in in-plane than out-of-plane.
$>$ Polarization along beam direction:
- Quadrupole structure of polarization along beam direction is observed, as expected from elliptic flow.
- Strong centrality dependence similar to that of elliptic flow.

Backup

STAR
 Resolution Correction (determine the matrix)

For a given $\Delta \Psi$, we can trace the contribution from the original bin i to bin j after smearing by integrating the relative particle yield:

$$
\begin{gathered}
\frac{1}{2 \pi} \int_{x 1}^{x 2} 1+2 v_{2} \cos (2(\phi-\Psi)) d \phi=\left(\left.\frac{1}{2 \pi}\left(\phi-v_{2} \sin (2(\phi-\Psi))\right)\right|_{x 1} ^{x 2}\right. \\
\Psi_{o b s}=\Psi_{R P}+\Delta \Psi
\end{gathered}
$$

This process can be repeated over many $\Delta \Psi$ for which the probability distribution function is given by:

$$
f(\Delta \Psi)=\frac{1}{2 \pi}\left[e^{-\frac{\chi^{2}}{2}}+\sqrt{\frac{\pi}{2}} \chi \cos (\Delta \Psi) e^{-\frac{\chi^{2} \sin ^{2}(\Delta \Psi)}{2}}\left(1+\operatorname{erf}\left(\chi \cos \frac{(\Delta \Psi)}{\sqrt{2}}\right)\right)\right]
$$

S. Voloshin and Y. Zhang Z. Phys. C 70 (1996)665

Thus, $a_{i j}=\frac{M_{i j}}{\sum_{i} M_{i j}} * r_{i j}$ can be determined

