1Reconstruction of neutral-triggered charged recoil jets in $\sqrt{s} = 200$ 2GeV p+p collisions at the STAR experiment3Derek Anderson, for the STAR Collaboration4V5.05Cyclotron Institute, Texas A&M University

Jets - collimated sprays of hadrons - are produced by the hard-scattering 6 of partons during the early stages of heavy-ion collisions. Hence they provide 7 a valuable probe of the complex, multi-particle dynamics within the hot, 8 dense medium produced in such collisions. In particular, the study of jets 9 recoiling from direct photons (γ_{dir} +jet) may shed light on the energy-loss 10 experienced by a parton as it traverses the medium¹. Since a γ_{dir} does not 11 strongly interact with the medium, its energy closely approximates the initial 12 energy of the recoiling parton. Moreover, it is interesting to compare γ_{dir} +jet 13 to jets recoiling from energetic π^0 (π^0 +jet). As there are several differences 14 in the production of γ_{dir} +jet vs. π^0 +jet, including a surface bias in the 15 selection of π^0 triggers and a dominance of quark jets recoiling from the γ_{dir} 16 triggers, one may anticipate a difference in the energy loss experienced by 17 γ_{dir} -triggered recoil jets relative to the π^0 -triggered recoil jets. 18

In this poster we will present the measurement of the yields of charged 19 recoil jets in p+p-collisions at $\sqrt{s} = 200$ GeV which will serve as a vacuum 20 fragmentation reference. The charged particles in the jets are measured using 21 the STAR Time Projection Chamber, and the γ_{dir}/π^0 triggers are measured 22 using the STAR Barrel Electromagnetic Calorimeter. The neutral-particle 23 triggers satisfy $9 < E_T^{trg} < 20 \text{ GeV}$ and $|\eta^{trg}| < 0.9$, and jets are reconstructed 24 from charged tracks with $p_T^{trk} > 0.2 \text{ GeV}/c$ and $|\eta^{trk}| < 1$ using the anti-25 k_T algorithm for various resolution parameters. The data are corrected for 26 instrumental effects using an iterative Bayesian unfolding $procedure^2$ and 27 then compared to PYTHIA 8 simulations³. 28

¹X.-N. Wang, Z. Huang, and I. Sarcevic, Phys. Rev. Lett. 77, 231 (1996)

²G. D'Agostini, Nucl. Instrum. Meth. A 362, 487 (1995)

³T. Sjöstrand, S. Mrenna and P. Z. Skands, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820 [hep-ph]]