

Exploring the deformation of nuclei with v_n - $\langle p_T \rangle$ correlation from STAR

Shengli Huang

Outline:

- 1. Physics motivations
- 2. Correlation between v_n and $\langle p_T \rangle$
- 3. Model comparisons
- 4. Summary

Deformation and v_2 - $\langle p_T \rangle$ correlation

Nuclear density:
$$ho(r, heta)=rac{
ho_0}{1+e^{(r-R_0(1+oldsymbol{eta_2}Y_{20}(heta))/a}}$$

 β_2 of ²³⁸U is large

reference	Raman et al.	Löbner et al.	Möller et al.	Möller et al.
method	exp	exp	FRDM	FRLDM
eta_2	0.286	0.281	0.215	0.236

 β_2 of ¹⁷⁹Au is small and can be used as baseline

√	Deformation is			
	dominated by			
	quadrupole			
	component β_2			

reference	Möller et al.	Möller et al.	CEA DAM
method	FRDM	FRLDM	HFB
β_2	-0.131	-0.125	-0.10

Body-Body

Tin Tin

large R, small $\langle p_T
angle$

large ϵ_2 , large v_2

✓ Deformation has negative contribution on correlation between v_2 and $\langle p_T \rangle$

small *R,* large $\langle p_T
angle$

small ϵ_2 , small v_2

✓ v_2 - $\langle p_T \rangle$ correlation: A novel tool to reveal the quadrupole deformation at extremely short time scale (< 10^{-24} s).

The STAR detector

- <p_T> and v_n are measured within 0.2<p_T<2.0 GeV/c and $|\eta|<$ 1.0
- Multiplicity are measured within $0.2 < p_T < 2.0 \text{ GeV/c}$ and $|\eta| < 0.5$
- Track efficiency is corrected from embedding data

Event-by-event v_n vs. $\langle p_T \rangle$ in ultra central (0-0.5%) collisions

- $egin{array}{c|cccc} v_n & {
 m System} & {
 m slope} \ \hline v_2 & {
 m U+U} & -3.5\% \pm 0.1\% \ \hline v_2 & {
 m Au+Au} & 2.6\% \pm 0.2\% \ \hline v_3 & {
 m U+U} & 1.7\% \pm 0.2\% \ \hline v_3 & {
 m Au+Au} & 1.9\% \pm 0.2\% \ \hline \end{array}$
- Negative correlation is observed between v_2 and $\langle p_T \rangle$ in central U+U collisions while not in Au+Au \longrightarrow large deformation in U+U
- \triangleright v₃ \langle p_T \rangle correlations are positive and similar between Au+Au and U+U
- ➤ After implementing the statistical fluctuation (due to finite multiplicity), TRENTo model can reproduce the data quantitatively.

Pearson coefficient: designed to measure dynamical fluctuations

P. Bozek, PRC93, 044908(2016); B. Schenke et al., PRC102, 034905(2020); G. Giacalone, PRC102, 024901(2020), PRL124, 202301(2020), arXiv:2006.15721; F.G. Gardim et al., PLB809, 135749(2020); ATLAS EPJC79, 985(2019)

$$hoig(v_n^2,[p_T]ig) = rac{ ext{cov}ig(v_n^2,[p_T]ig)}{\sqrt{ ext{Var}ig(v_n^2ig)_{ ext{dyn}}ig\langle\delta p_T\delta p_Tig
angle}}$$

$$\operatorname{Var}\left(v_{n}^{2}
ight)_{\mathrm{dyn}}=v_{n}\{2\}^{4}-v_{n}\{4\}^{4}$$

$$\begin{array}{l} \text{O44908(2016); B. Schenke et al.,} \\ \text{O2020); G. Giacalone, PRC102,} \\ \text{RL124, 202301(2020), arXiv:2006.15721;} \\ \text{, PLB809, 135749(2020) ; ATLAS EPJC79,} \end{array} \\ \begin{array}{l} \text{cov} \left(v_n^2, [p_{\mathrm{T}}]\right) \equiv \left\langle \frac{\sum_{i \neq j \neq k} w_i w_j w_k e^{in\phi_i} e^{-in\phi_j} \left(p_{\mathrm{T},k} - \left\langle \left\langle p_{\mathrm{T}} \right\rangle \right\rangle \right)}{\sum_{i \neq j \neq k} w_i w_j w_k} \right\rangle_{\mathrm{evt}} \\ \text{evt} \\ \\ \rho \left(v_n^2, [p_{\mathrm{T}}]\right) = \frac{\mathrm{cov} \left(v_n^2, [p_{\mathrm{T}}]\right)}{\sqrt{\mathrm{Var} \left(v_n^2\right)_{\mathrm{dyn}} \left\langle \delta p_{\mathrm{T}} \delta p_{\mathrm{T}} \right\rangle}} \\ \text{Var} \left(v_n^2\right)_{\mathrm{dyn}} = v_n \{2\}^4 - v_n \{4\}^4 \end{array} \\ \begin{array}{l} \text{Var} \left(v_n^2\right)_{\mathrm{dyn}} \left\langle \delta p_{\mathrm{T}} \delta p_{\mathrm{T}} \right\rangle = \left\langle \frac{\sum_{i \neq j} w_i w_j (p_{\mathrm{T},i} - \left\langle \left\langle p_{\mathrm{T}} \right\rangle \right) (p_{\mathrm{T},j} - \left\langle \left\langle p_{\mathrm{T}} \right\rangle \right)}{\sum_{i \neq j} w_i w_j} \right\rangle_{\mathrm{evt}} \\ \\ \text{Var} \left(v_n^2\right)_{\mathrm{dyn}} = v_n \{2\}^4 - v_n \{4\}^4 \end{array} \\ \begin{array}{l} \text{Var} \left(v_n^2\right)_{\mathrm{dyn}} \left\langle \delta p_{\mathrm{T}} \delta p_{\mathrm{T}} \right\rangle = \left\langle \frac{\sum_{i \neq j} w_i w_j (p_{\mathrm{T},i} - \left\langle \left\langle p_{\mathrm{T}} \right\rangle \right) (p_{\mathrm{T},j} - \left\langle \left\langle p_{\mathrm{T}} \right\rangle \right)}{\sum_{i \neq j} w_i w_j} \right\rangle_{\mathrm{evt}} \end{array}$$

$$\langle \delta p_{
m T} \delta p_{
m T}
angle = \left\langle rac{\sum_{i
eq j} w_i w_j (p_{
m T,i} - \langle \langle p_{
m T}
angle) (p_{
m T,j} - \langle \langle p_{
m T}
angle)}{\sum_{i
eq j} w_i w_j}
ight
angle_{
m e}$$

Nonflow effect: sub-event method

Standard

 $|v_2,p_T||\eta|<1.0$

2-subevent

$$v_2^{
m A} \; \eta < -0.1 \qquad \qquad v_2^{
m B} \; \eta > 0.1$$

$$v_2^{
m B}~\eta>0.1$$

$$< p_T > |\eta| < 1.0$$

3-subevent

$$v_2^{
m A}~\eta < -0.35$$

$$< p_T > |\eta| < 0.35$$

$$v_2^{
m C} \eta > 0.35$$

Dynamical v_n^2 variance and $\langle p_T \rangle$ fluctuations

Both flow and $\langle p_T \rangle$ fluctuations affected by nuclear deformation

Covariance $Cov(v_n^2, [p_T])$

Sign-change for $cov(v_2^2, [p_T])$ in central U+U as expected from deformation S. Huang ISMD2021

Pearson coefficient $\rho(\mathbf{v}_n^2, [\mathbf{p}_T])$

 $\checkmark \rho(v_2^2, [p_T])$ is quite different between central U+U(negative) and Au+Au(positive)

 $\checkmark \rho(v_3^2, [p_T])$ is similar and always positive in Au+Au and U+U collisions S. Huang ISMD2021

$\rho \! \left(v_n^2, [p_T] \right)$ from Sub-Event Method

Sub-event methods indicate non-flow effect is negligible in central AA collisions

$\rho \! \left(v_n^2, [p_T] \right)$ in Different P_T Selection

IP-Glasma+Hydro: private calculation provided by Bjoern Schenke (based on B. Schenke, C. Shen, P. Tribedy, PRC102, 044905(2020))

Features for $0.5 < p_T < 2 \text{ GeV/c}$ are same as $0.2 < p_T < 2 \text{ GeV/c}$.

Comparison with TRENTo Model

TRENTo: private calculation provided by Giuliano Giacalone(based on PRC102, 024901(2020), PRL124, 202301(2020))

TRENTo fails to describe the STAR data but shows a hierarchical β_2 dependence in U+U collisions.

TRENTo suggests this sign-change in the central collisions could be due to deformation effect.

TRENTo prefers the β_2 value between 0.28 to 0.4 for Uranium *S. Huang ISMD2021*

Comparison with IP-Glasma+Hydro

IP-Glasma+Hydro: private calculation provided by Bjoern Schenke (based on B. Schenke, C. Shen, P. Tribedy, PRC102, 044905(2020))

A hierarchical β_2 dependence for $\rho(v_2^2, [p_T])$ while not for $\rho(v_3^2, [p_T])$ in U+U in IP-Glasma

Data comparable to β_2 ~0.28 with IP-Glasma but with large uncertainty

Comparison with AMPT Model

- ✓ AMPT allows more precise calculation due to large statistics
- \checkmark β_2 value around 0.34-0.40 by comparing with AMPT

Comparison with Model in Central UU

- \checkmark β_2 is around 0.2-0.4 for U+U by comparing with three models in central collisions
- ✓ First extraction of the quadrupole deformation at extremely short time scale (< 10⁻²⁴s) in heavy-ion collisions.

Summary

A sign change of v_2 - p_T correlation is observed in central U+U while not in Au+Au collisions

Nonflow has been studied via sub-event methods and found to be negligible in central collisions

Comparison with several model calculations constrains β_2 in the range of 0.2-0.4 for Uranium

First constraints on quadrupole deformation at extremely short time scale (< 10⁻²⁴s) accessible through heavy-ion collisions.