Two-pion Bose-Einstein correlations in Au+Au collisions at $\sqrt{s_{NN}} = 3$ GeV in the STAR experiment

Anna Kraeva (for the STAR Collaboration)
National Research Nuclear University MEPhI, Moscow, Russia

52nd International Symposium on Multiparticle Dynamics
Győngyös, Hungary, 21–26 August 2023
Motivation:

- The correlation femtoscopy technique can reveal the structure of homogeneity region.
- The energy dependence of source size may reveal fundamental insights into the equation of state of strongly-interacting matter.
- Measurements of the emission region characteristics not only at midrapidity, but also at the backward (forward) rapidity can provide new information about the source and make it possible to impose constraints on the heavy-ion collision models.

Goals:

- Estimation of spatial and temporal parameters of the particle-emission region in Au+Au collisions at $\sqrt{s_{\text{NN}}} = 3$ GeV using the STAR data.

Experiments:

Experiment STAR

Program on a fixed target

Fixed-target program:
- Gold target of thickness 1.93 g/cm2 (0.25 mm)
- Located 200.7 cm from the center of the Time Projection Chamber (TPC)
- Gold beam of energy 3.85 GeV/n
Identification of particles:

0.15 < p < 0.55 GeV/c: TPC; 0.55 < p < 1.5 GeV/c: TPC+TOF

Pion acceptance:

Pion identification was carried out in a wide range of momentum 0.15 < p < 1.5 GeV/c.
The purity of pions is not lower than 98%.
Measuring two-particle correlation function (CF) experimentally

\[C(q) = \frac{A(q)}{B(q)} \]

- formed using pairs where both tracks come from the same event. It contains correlations due to quantum-statistics (QS) and final state interactions (FSI, Coulomb dominated).

\[B(q) \] - obtained via mixing technique, where the two tracks come from separate events. Femtoscopic correlations are absent.

q - relative momentum

The relative pair momentum can be projected onto the Bertsch-Pratt, out-side-long system:

\(q_{\text{long}} \) - along the beam direction,
\(q_{\text{out}} \) - along the transverse momentum of the pair,
\(q_{\text{side}} \) - perpendicular to longitudinal and outward directions

\[S. \ Pratt. \ Phys. \ Rev. \ D \ 33 \ (1986) \ 1314 \]
\[G. \ Bertsch, \ Phys. \ Rev. \ C \ 37 \ (1988) \ 1896 \]

CF are constructed in Longitudinally Co-Moving System (LCMS), where \(p_{1,z} + p_{2,z} = 0 \)
Femtoscopic radii are extracted by fitting $C(q)$ with Bowler-Sinyukov:

$$C(q) = N[(1 - \lambda) + \lambda K(q)(1 + G(q))]$$

where

$$G(q) = \exp(-q_{out}^2 R_{out}^2 - q_{side}^2 R_{side}^2 - q_{long}^2 R_{long}^2 - 2q_{out} q_{long} R_{ol}^2)$$

N - normalization factor,

$K(q)$ - Coulomb correction factor,

λ - correlation strength,

$R_{side} \sim$ geometrical size of the particle emission source,

$R_{out} \sim$ geometrical size + particle-emitting duration

$R_{long} \sim$ medium lifetime,

$R_{out-long}^2$ – tilt of the CF in the $q_{out} - q_{long}$ plane,

depending on the degree of asymmetry of the rapidity acceptance w.r.t. midrapidity.

$$\chi^2 = -2 \left[A \ln \left(\frac{C(A + B)}{A(C + 1)} \right) + B \ln \left(\frac{A + B}{B(C + 1)} \right) \right] , C = \frac{A}{B}$$

Fit example:
Correlation functions of positive and negative pions pairs at centrality 0-10% in range $0.15<k_T<0.25$ GeV/c of momentum

$$\vec{k}_T = (\vec{p}_{1,T} + \vec{p}_{2,T})/2$$

- The correlation functions of identical pions were constructed for all ranges in k_T
- Correlation functions of positive and negative pions differ slightly for small k_T, which may be due to residual electric charge
- Femtoscopic radii are extracted by fitting correlation function with Bowler-Sinyukov
Charged pion femtoscopic radii

- The femtoscopic radii of the emission region in the out, side and long projections for positive and negative pions decrease with increasing transverse momentum of pairs due to a decrease in the emission region of the system due to transverse flow.

- Femtoscopic radii of positive and negative pions differ considerably for side and long projections.

Diagram: STAR Preliminary
0-10 % Au+Au $\sqrt{s_{NN}} = 3$ GeV

Anna Kraeva | ISMD 2023
Acceptance of positively (left panel) and negatively (right panel) charged pion pairs for Au+Au collisions at $\sqrt{s_{NN}} = 3$ GeV. Dashed lines denote the selected rapidity windows for the rapidity-differential analysis.
Rapidity dependence of charged pion femtoscopy radii

Gray markers are the measured results mirrored w.r.t. midrapidity \(y_{cm-y_{pair}} = 0 \)

STAR Preliminary

\(Au+Au \ \sqrt{s_{NN}} = 3 \ GeV \)

0.15 < \(k_T \) (GeV/c) < 0.6

- 0-10% \(\pi \pi \)
- 0-10% \(\pi^*\pi^* \)
- 10-30% \(\pi \pi \)
- 10-30% \(\pi^*\pi^* \)
- 30-50% \(\pi \pi \)
- 30-50% \(\pi^*\pi^* \)
- sys. uncertainty

\(R_{out} \) and \(R_{side} \) decrease with going out of midrapidity:

- **Hints on boost-invariance breaking**

Clear rapidity dependence of \(R_{out-long}^2 \):

- **Asymmetric rapidity window in analysis, could give rise to non-zero values in rapidity integrated measurement**

\(R_{out} \), \(R_{side} \) and \(R_{long} \) increase from peripheral to central collisions reflecting the geometry of the overlapping region.
Summary

- Femtoscopic measurements of charged pions produced in Au+Au collisions at $\sqrt{s_{NN}} = 3$ GeV are presented.
- The transverse momentum dependence of emitting source radii (R_{out}, R_{side}, R_{long}) was measured.
 - Femtoscopic radii decrease with increasing k_T due to transverse flow.
- The dependence of the λ, R_{out}, R_{side}, R_{long}, $R_{out-long}^2$ from the pair rapidity and centrality (0-10%, 10-30%, 30-50%) was presented.
 - Clear rapidity dependence of $R_{out-long}^2$.
 - Decrease of R_{side} with increasing rapidity shows a hint of the boost-invariance breaking.