First-order event plane correlated directed and triangular flow from fixed-target energies at RHIC-STAR

3

5

6

Sharang Rav Sharma (for the STAR collaboration)

Indian Institute of Science Education and Research (IISER) Tirupati

⁸ Relativistic heavy-ion collisions produce a deconfined state of quarks and gluons known as the ⁹ Quark Gluon Plasma (QGP). Lattice QCD calculations have demonstrated that the transition be-¹⁰ tween the QGP and the hadronic matter is a smooth crossover at vanishing baryon chemical potential ¹¹ (μ_B) and high temperature (T). However, various QCD effective models have suggested that the ¹² transition between the QGP and the hadronic matter is a first-order phase transition at large μ_B ¹³ and low T.

Anisotropic flow parameters (v_n) are important observables as they provide insight into the collective 14 hydrodynamic expansion and transport properties of the medium produced in relativistic heavy-ion 15 collisions. Among these parameters, directed flow (v_1) describes the collective sideward motion of 16 produced particles in heavy-ion collisions. It is an important probe to study the in-medium dynam-17 ics as it is sensitive to the equation of state (EoS) of the produced medium. Minimum in the slope 18 of directed flow (dv_1/dy) as a function of collision energy has been proposed as a signature of the 19 first-order phase transition between hadronic matter and QGP. Triangular flow (v_3) typically arises 20 from the initial state fluctuations and is expected to be uncorrelated to the reaction plane. However 21 recent measurements at lower collision energies show a correlation between v_3 and the first-order 22 event plane angle (Ψ_1) . 23

In this presentation, we will report the first measurements of v_1 and v_3 for π , K, p, d, and t in

Au+Au collisions at $\sqrt{s_{NN}} = 3.2, 3.5, 3.9, \text{ and } 4.5 \text{ GeV}$ in fixed-target mode from the second phase

²⁶ of the beam energy scan (BES-II) program at RHIC-STAR. The rapidity, centrality, and collision

 v_1 energy dependence of v_1 and v_3 will be presented, and their physics implications will be discussed.