

Collision energy and system size dependence of J/ψ production in heavy-ion collisions with STAR

Yan Wang (for the STAR Collaboration)

State Key Laboratory of Particle Detection and Electronics,

Department of Modern Physics,

University of Science and Technology of China

ICHEP 6-13.Jul.2022, Bologna, Italy

Outline

- > Introduction
- Energy dependence of J/ψ production
- >System size dependence of J/ψ production
- **>**Summary

Motivation

- > J/ψ provides a good probe to the Quark-Gluon Plasma (QGP) o
- ➤ Produced via hard scattering, experience the whole medium evolution

- Dissociation
- Regeneration
- ➤ Cold nuclear matter effects (e.g. nPDF, coherent energy loss, nuclear absorption)
- ➤ Other final state effects (e.g. comovers)
- \triangleright J/ ψ nuclear modification factor, R_{AA} , is defined as

$$R_{AA} = \frac{1}{\langle N_{coll} \rangle} \times \frac{d^2 N_{AA} / dp_T dy}{d^2 N_{pp} / dp_T dy}$$

Dissociation

Regeneration

Au+Au collisions at 54.4 GeV

STAR Collaboration Phys. Lett. B 771 (2017) 13–20

- > The J/ψ production has been measured in Au+Au collisions at 39, 62.4 and 200 GeV and in Pb+Pb collisions at 17.2 GeV, 2.76 and 5.02 TeV
- No significant energy dependence of nuclear modification factor within large uncertainties at $\sqrt{S_{NN}} \le 200 \text{ GeV}$
- $ightharpoonup \sim 10 x$ more statistics in 54.4 GeV compared to 62.4 GeV, which will help better understand the energy dependence of J/ψ suppression

Isobar collisions at 200 GeV

- ightharpoonup Large isobar sample ($^{92}_{44}$ Ru + $^{92}_{44}$ Ru and $^{92}_{40}$ Zr + $^{92}_{40}$ Zr) collected by STAR
 - ~ 4B good minimum bias events
 - Unique opportunity to measure the spectra with good precision
- $ightharpoonup {}^{92}_{44}Ru + {}^{92}_{44}Ru$ and ${}^{92}_{40}Zr + {}^{92}_{40}Zr$ have moderate collisions size
 - Ideal for studying the system size dependence

The Solenoidal Tracker At RHIC

Electron identification

> TPC, TOF, and BEMC used to identify electron

• TOF: $\frac{1}{\beta}$

• BEMC: $\frac{E_0}{p}$

• TPC: $n\sigma_e$

J/ψ signal in Au+Au collisions at 54.4 GeV

- > J/ψ raw signal is reconstructed through dielectron channel
- ➤ The combinatorial background from mixed-event technique is subtracted
- > Residual background described by a linear fit
- Raw counts extracted by bin counting in 2.7 < $M_{ee} < 3.2 \text{ GeV}/c^2$

$\sqrt{s_{ m NN}}$	39 GeV	54.4 GeV	62.4 GeV	200 GeV
S/B	0.34	0.06	0.19	0.03
Significance	10	24	9	22

(STAR Collaboration) Phys. Lett. B 771 (2017) 13-20

R_{AA} vs p_T in Au+Au collisions

 R_{AA} increases with increasing p_T for 39, 54.4 and 62.4 GeV

R_{AA} vs (N_{part}) in Au+Au collisions

- Suppression of J/ ψ production is observed in Au+Au collisions at 54.4 GeV with better precision compared to 39 and 62.4 GeV
- No significant energy dependence is observed among 39, 54.4, 62.4 and 200 GeV

R_{AA} vs $\sqrt{s_{NN}}$

X. Zhao, R. Rapp, Phys. Rev. C 82 (2010) 064905 (private communication). L. Kluberg, Eur. Phys. J. C 43 (2005) 145. NA50 Collaboration, Phys. Lett. B 477 (2000) 28.

- > 54.4 GeV data follow the trend with improved precision
- ➤ No significant energy dependence is observed within uncertainties up to 200 GeV
 - Interplay of dissociation, regeneration and cold nuclear matter effects
- ➤ Model calculation is consistent with the observed energy dependence

Calculations are for the same system as data points and in 0-20% centrality

ALICE Collaboration, Phys. Lett. B 734 (2014) 314 STAR Collaboration, Phys. Lett. B 771 (2017) 13-20 STAR Collaboration, Phys. Lett. B 797 (2019) 134917 ALICE Collaboration, Nucl. Phys. A 1005 (2021) 121769

J/ψ signal in isobaric collisions at 200 GeV

R_{AA} vs p_T in isobaric collisions

- The R_{AA} as a function of p_T measured in different centralities of isobaric collisions
- ➤ Highest precision measurement at RHIC to date
- Significant suppression observed
- Consistent with Au+Au and Cu+Cu results for similar system size

STAR Collaboration, Phys. Lett. B 797 (2019) 134917 PHENIX Collaboration, Phys. Rev. Lett. 101 (2008) 122301

R_{AA} vs (N_{part})

- \triangleright Significant suppression is observed at large N_{part} range
- ➤ No significant collision system size and energy dependence at RHIC

Summary

- $ightharpoonup J/\psi R_{AA}$ is measured in isobaric collisions at 200 GeV and Au+Au collisions at 54.4 GeV with great precision
- > Significant suppressions of J/ψ in central isobaric and Au+Au collisions have been observed
- > No significant collision energy and system size dependence of J/ ψ R_{AA} for similar $\langle N_{part} \rangle$ at RHIC
 - Interplay of dissociation, regeneration and cold nuclear matter effects